The primary objective of the Pathology Core for this P01 is to facilitate the discovery and validation of novel targets and therapies for melanoma. To test the therapeutic efficacy of targeted therapies, it is essential to conduct well-planned research using state-of-the art preclinical models;these include patient-derived xenografts (PDXs), transgenic Tyr:creERT2, BRAF[CA/+], [ca/+], PTEN[lox/lox] melanoma mice, and syngeneic models using melanoma cell lines from the mice. As over 1000 patients with melanoma are seen and treated at University of Pennsylvania Health system per year, the Pathology Core is well equipped to provide fresh melanoma tissues to the Cell Biology Core to generate PDXs. Standardized procedures for procurement, processing, storage, quality control, histopathologic evaluation and distribution of samples will ensure optimal utilization and distribution of limited tissue samples to P01 projects. In addition to human samples, the pathology core will serve as a central repository for all mouse tissue generated by this P. The Pathology Core will provide technical support for developing and performing tissue-based assays and the core pathologist will provide expert pathological assistance in the interpretation of histological and immunostaining data. Centralized tissue repository, tissue processing, result acquisition and data interpretation will enable more collaboration across projects and allow new paths of research to emerge. The Core is led by a senior dermatopathologist with extensive experience in translational and laboratory investigation. The Pathology Core will interact with other P01 Cores and other core facilities at Penn and Wistar to support P01 projects. This coordination will allow the P01 investigators to most efficiently perform tissue-based research to find new therapeutic targets as well as to evaluate new combination therapies. In addition to tailoring services to the needs of each project, the central coordination and analysis of tissue will be time- and cost-effective.

Public Health Relevance

Melanoma is the most aggressive form of skin cancer and the incidence of melanoma continues to rise worldwide. Current melanoma therapies are either ineffective or they elicit short-lived responses due to the rapid development of treatment resistance. The Pathology Core will allow the P01 investigators to most efficiently perform tissue-based research to find new therapeutic targets as well as to evaluate new combination therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA114046-07
Application #
8759677
Study Section
Special Emphasis Panel (ZCA1-RPRB-2)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
7
Fiscal Year
2014
Total Cost
$101,369
Indirect Cost
$29,025
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Noguera-Ortega, Estela; Amaravadi, Ravi K (2018) Autophagy in the Tumor or in the Host: Which Plays a Greater Supportive Role? Cancer Discov 8:266-268
Jenkins, Russell W; Aref, Amir R; Lizotte, Patrick H et al. (2018) Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids. Cancer Discov 8:196-215
Emptage, Ryan P; Lemmon, Mark A; Ferguson, Kathryn M et al. (2018) Structural Basis for MARK1 Kinase Autoinhibition by Its KA1 Domain. Structure 26:1137-1143.e3
Barnoud, Thibaut; Budina-Kolomets, Anna; Basu, Subhasree et al. (2018) Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Res 78:5694-5705
Liu, Shujing; Zhang, Gao; Guo, Jianping et al. (2018) Loss of Phd2 cooperates with BRAFV600E to drive melanomagenesis. Nat Commun 9:5426
Pathria, Gaurav; Scott, David A; Feng, Yongmei et al. (2018) Targeting the Warburg effect via LDHA inhibition engages ATF4 signaling for cancer cell survival. EMBO J 37:
Reyes-Uribe, Patricia; Adrianzen-Ruesta, Maria Paz; Deng, Zhong et al. (2018) Exploiting TERT dependency as a therapeutic strategy for NRAS-mutant melanoma. Oncogene 37:4058-4072
Rebecca, Vito W; Nicastri, Michael C; Fennelly, Colin et al. (2018) PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discov :
Kaur, Amanpreet; Ecker, Brett L; Douglass, Stephen M et al. (2018) Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discov :
Chen, Gang; Huang, Alexander C; Zhang, Wei et al. (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382-386

Showing the most recent 10 out of 144 publications