A detailed understanding of how common oncogenic signaling pathways are assembled into larger signaling networks is essential to developing therapeutic strategies to properly target these pathways in cancer and for interpreting clinical outcomes from targeted therapeutics. While the effected oncogenes and tumor suppressors that predominate different classes of human cancer can vary greatly, a small number of highly integrated signaling nodes are affected in the majority of human cancers, regardless of tissue of origin. It is important to understand how these key signaling nodes are regulated and what the downstream consequences are for tumor development, progression, and treatment. In this project, we focus on one such node, involving the TSC1-TSC2 complex and the Ras-related small G protein Rheb, which is aberrantly regulated in nearly all genetic tumor syndromes and the most common forms of sporadic cancer. Currently, the only known downstream target of this small G protein switch is the mammalian target of rapamycin (mTOR).
The aims of this project will employ both hypothesis-driven approaches, based on studies from the first 4 years of this P01, and unbiased genomic and proteomic screens.
The aims are designed to 1) reveal new components, connections, and dowstream targets within the TSC-Rheb signaling network, 2) identify and characterize previously unexplored therapeutic strategies to target this network in tumors, 3) identify novel biomarkers to predict and monitor therapeutic responses, 4) serve as a discovery-based platform to fuel the preclinical elements in projects 2 and 3 of this program, and 5) bioinformatically analyze and integrate the large cross-species data sets generated within all projects of the program. To achieve these goals, we will closely integrate high-throughput technologies in Drosophila (Perrimon laboratory) with mechanistic characterization and validation in mammalian cell and tumor models (Manning laboratory

Public Health Relevance

In this project, we will define the molecular functions of a cancer-causing biochemical pathway that contributes to the development and progression of both inherited tumor syndromes and the most common forms of cancer. The research approach is geared toward identifying novel therapeutic strategies to target this pathway in tumors.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
4P01CA120964-10
Application #
9120334
Study Section
Special Emphasis Panel (ZCA1-RPRB-O)
Project Start
Project End
Budget Start
2016-08-01
Budget End
2017-07-31
Support Year
10
Fiscal Year
2016
Total Cost
$240,390
Indirect Cost
$10,751
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Lewis Jr, Tommy L; Kwon, Seok-Kyu; Lee, Annie et al. (2018) MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat Commun 9:5008
Eichner, Lillian J; Brun, Sonja N; Herzig, Sébastien et al. (2018) Genetic Analysis Reveals AMPK Is Required to Support Tumor Growth in Murine Kras-Dependent Lung Cancer Models. Cell Metab :
Deng, Jiehui; Wang, Eric S; Jenkins, Russell W et al. (2018) CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-cell Activation. Cancer Discov 8:216-233
Herzig, Sébastien; Shaw, Reuben J (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121-135
Du, Heng; Dreier, John R; Zarei, Mahsa et al. (2018) A novel mouse model of hemangiopericytoma due to loss of Tsc2. Hum Mol Genet 27:4169-4175
McBrayer, Samuel K; Mayers, Jared R; DiNatale, Gabriel J et al. (2018) Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell 175:101-116.e25
Kamareddine, Layla; Wong, Adam C N; Vanhove, Audrey S et al. (2018) Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nat Microbiol 3:243-252
Wu, Shulin; Ye, Jianheng; Wang, Zongwei et al. (2018) Expression of aromatase in tumor related stroma is associated with human bladder cancer progression. Cancer Biol Ther 19:175-180
Ye, Jianheng; Zhang, Yanqiong; Cai, Zhiduan et al. (2018) Increased expression of immediate early response gene 3 protein promotes aggressive progression and predicts poor prognosis in human bladder cancer. BMC Urol 18:82
Cañadas, Israel; Thummalapalli, Rohit; Kim, Jong Wook et al. (2018) Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat Med 24:1143-1150

Showing the most recent 10 out of 289 publications