reject 3. The role of epigenetic factors in regulation of coding and non-coding HOX genes. Epigenetic regulation of gene expression during development relies on the products of two large gene amilies, the trithorax-group (trxG) of activators and the Polycomb-group (PcG) of repressers. The emerging picture of their functioning suggests that these proteins exert their activities by altering the chromatin structure of their target genes. Importantly, irrespective of the ways in which trxG and PcG proteins exert their activities, they are capable of locking in a specific status of gene expression, which s then inherited in an epigenetic fashion in daughter cells. The studies of these two groups of proteins have an important health-related application since some of these proteins, as for example ALL-1/MLL, are believed to be involved in a number of cancers. Our data suggest that the trxG protein complex TAC1, containing a Drosophila homologue of ALL-1, is an essential component of the network of factors that facilitate elongation by RNA polymerase II (Pol II). Recruitment of TAC1 to the elonagting 3ol II depends on a number of elongation factors, and is accompanied by modifications of histones in the coding region of its target homeotic gene Ultrabithorax (Ubx). We also discovered that TAG1 is essential for transcriptional elongation of a number of non-coding intergenic transcripts (ncRNAs) in the Ubx locus. Expression of these ncRNAs precedes expression of Ubx and represses Ubx expression in certain cells of the developing embryo. Repression by ncRNAs may occur by the novel for higher eukaryotes transcription interference mechanism, although other transcription-based repression mechanisms cannot be also excluded. To extend these studies for other regions of the BX- C and to obtain further insight into functioning of TAC1 in conjunction with other trxG and PcG proteins we will: (i) Investigate the mechanisms of Ubx repression by the upstream ncRNAs;(ii) Extend these studies to other ncRNAs and other HOX genes in the BX-C;(iii) Investigatethe roles of TAC1 and other trxG proteins at Ubx promoter and bxd ncRNAs;(iv) Investigate functioning of trxG and PcG complexes at their common epigenetic elements. Answers to these questions will shed new light not only on the way TAC1 exerts its effects during transcriptional regulation, but will also reveal the roles of other trxG and PcG proteins in epigenetic maintenance during cell cycle. The exciting new possibility is that part of the TAC1 effect on HOX gene regulation may occur through its regulation of ncRNAs that in their turn are essential for creating mosaic patterns of HQX gene expression.

Public Health Relevance

Given structural and functional similarities between TRX and ALL-1, and the fact that human HOX clusters also contain ncRNAs, these studies will greatly advance our knowledge of the basic mechanisms of transcriptional regulation in higher eukaryotes and their relevance to diseases like cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA129242-04
Application #
8378162
Study Section
Special Emphasis Panel (ZCA1-GRB-S)
Project Start
Project End
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
4
Fiscal Year
2012
Total Cost
$421,468
Indirect Cost
$90,952
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Nakanishi, H; Taccioli, C; Palatini, J et al. (2014) Loss of miR-125b-1 contributes to head and neck cancer development by dysregulating TACSTD2 and MAPK pathway. Oncogene 33:702-12
Di Leva, Gianpiero; Garofalo, Michela; Croce, Carlo M (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287-314
Carbonell, Albert; Mazo, Alexander; Serras, Florenci et al. (2013) Ash2 acts as an ecdysone receptor coactivator by stabilizing the histone methyltransferase Trr. Mol Biol Cell 24:361-72
Petruk, Svetlana; Black, Kathryn L; Kovermann, Sina K et al. (2013) Stepwise histone modifications are mediated by multiple enzymes that rapidly associate with nascent DNA during replication. Nat Commun 4:2841
Manfè, Valentina; Biskup, Edyta; Willumsgaard, Ayalah et al. (2013) cMyc/miR-125b-5p signalling determines sensitivity to bortezomib in preclinical model of cutaneous T-cell lymphomas. PLoS One 8:e59390
Di Leva, Gianpiero; Piovan, Claudia; Gasparini, Pierluigi et al. (2013) Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet 9:e1003311
Acunzo, M; Visone, R; Romano, G et al. (2012) miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene 31:634-42
Garofalo, M; Quintavalle, C; Romano, G et al. (2012) miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 12:27-33
Iorio, Marilena V; Croce, Carlo M (2012) Causes and consequences of microRNA dysregulation. Cancer J 18:215-22
Petruk, Svetlana; Sedkov, Yurii; Johnston, Danika M et al. (2012) TrxG and PcG proteins but not methylated histones remain associated with DNA through replication. Cell 150:922-33

Showing the most recent 10 out of 33 publications