Since molecular events underlie clinical events, we hypothesize that unraveling mechanisms of intracellular signaling and metastasis in lung cancers will lead to the identification of targets for therapy for these illnesses and for individul patients. Our roles in the development of EGFR and ALK kinase inhibitors and the discoveries that mutations in EGFR and KRAS genes and ALK re-arrangements underlie sensitivity and resistance to these agents have demonstrated the practicality and potential of this approach. We propose 4 research projects and 3 cores built on an iterative research process uniting clinical and laboratory observations that have linked mutations in tumors to improved outcomes in patients. This grant embraces investigators, technologies, and pathways, each focused by a specific clinical question, proposing to identify targets for therapies in lung cancers. Project 1 ill characterize mediators of metastasis in lung cancers that can serve as targets for intervention. Project 2 attacks pan-refractory KRAS-driven tumors by targeting ERK and its feedback inhibition of upstream signaling in KRAS- and BRAF-driven lung cancers. RP3 will investigate mechanisms and modulators of sensitivity and resistance to EGFR inhibitors, elucidating the role of HER2 and identifying the intrinsic regulatory domains of EGFR-mutant kinases required for function. Project 4 uses innovative mouse models and RNA interference to interrogate lung cancer biology and therapy, focusing on gain of function p53 mutations and oncogenic drivers on 8p that cooperate with EGFR and KRAS mutations. Our Molecular Profiling & Pathology Core crystallizes nearly a decade of experience in specimen collection, precise pathologic characterization in mouse and annotated human samples, mutation testing, and gene profiling in lung cancers to enrich and support each project. The Biostatistics and Bioinformatics Core ensures consistency in biostatistical analyses, unifies information exchange, and provides projects with additional analytic capabilities. The Administration Core facilitates communication and dissemination of findings and provides the forum for the PIs and the Executive and Scientific Advisory Committees to ensure rigorous scientific review and reassessment of priorities.

Public Health Relevance

Lung cancers are America's leading cancer killers, responsible for 158,000 deaths this year. This grant addresses the two most critical roadblocks to improving the care and curability of persons with these illnesses: (1) understanding how cancers spread (metastasis) and (2) the lack of highly effective medicines to prevent spread or to eradicate cancers that have spread from the lung.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA129243-09
Application #
8930911
Study Section
Special Emphasis Panel (ZCA1-RPRB-J (M1))
Program Officer
Arya, Suresh
Project Start
2007-07-23
Project End
2017-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
9
Fiscal Year
2015
Total Cost
$1,736,914
Indirect Cost
$601,027
Name
Sloan-Kettering Institute for Cancer Research
Department
Type
DUNS #
064931884
City
New York
State
NY
Country
United States
Zip Code
10065
Mo, Qianxing; Shen, Ronglai; Guo, Cui et al. (2018) A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics 19:71-86
Childress, Merrida A; Himmelberg, Stephen M; Chen, Huiqin et al. (2018) ALK Fusion Partners Impact Response to ALK Inhibition: Differential Effects on Sensitivity, Cellular Phenotypes, and Biochemical Properties. Mol Cancer Res 16:1724-1736
Gao, Yijun; Chang, Matthew T; McKay, Daniel et al. (2018) Allele-Specific Mechanisms of Activation of MEK1 Mutants Determine Their Properties. Cancer Discov 8:648-661
Arbour, Kathryn C; Jordan, Emmett; Kim, Hyunjae Ryan et al. (2018) Effects of Co-occurring Genomic Alterations on Outcomes in Patients with KRAS-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 24:334-340
Gallant, Jean-Nicolas; Lovly, Christine M (2018) Established, emerging and elusive molecular targets in the treatment of lung cancer. J Pathol 244:565-577
Hellmann, Matthew D; Nathanson, Tavi; Rizvi, Hira et al. (2018) Genomic Features of Response to Combination Immunotherapy in Patients with Advanced Non-Small-Cell Lung Cancer. Cancer Cell 33:843-852.e4
Yao, Zhan; Gao, Yijun; Su, Wenjing et al. (2018) RAF inhibitor PLX8394 selectively disrupts BRAF dimers and RAS-independent BRAF-mutant-driven signaling. Nat Med :
Suzawa, Ken; Offin, Michael; Lu, Daniel et al. (2018) Activation of KRAS Mediates Resistance to Targeted Therapy in MET Exon 14-mutant Non-small Cell Lung Cancer. Clin Cancer Res :
Yu, Helena A; Planchard, David; Lovly, Christine M (2018) Sequencing Therapy for Genetically Defined Subgroups of Non-Small Cell Lung Cancer. Am Soc Clin Oncol Educ Book :726-739
Yuan, Tina L; Amzallag, Arnaud; Bagni, Rachel et al. (2018) Differential Effector Engagement by Oncogenic KRAS. Cell Rep 22:1889-1902

Showing the most recent 10 out of 188 publications