The Sentinel Initiative mandated by the Food and Drug Administration will lead to an enormous number of studies being planned post-market that will require analyzing and combining data from several different studies. The proposed project will address this challenge through developing new and flexible methods for meta-analysis using a variety of models, including models for binary and discrete data, models for longitudinal data, and models for time-to-event data. A related issue that will also be addressed is design, sample size, and power considerations using these types of meta-analytic models. Such models and data collected post-market can be quite useful in designing future clinical studies such as non-inferiority, equivalence, and superiority cancer clinical trials. The proposed project will also develop methods for metaanalytic studies of diagnostic tests to facilitate evidence-based medicine. We will also create flexible and robust methodology for accurately comparing rare adverse event rates in cancer for different drugs and for determining how those rates are affected by important prognostic factors. The proposed project will also explore statistical methods for the analysis of large cancer data sets for calibrating treatment dose in the presence of potentially conflicting factors, such as length and quality of life and economic costs. We will explore these tradeoffs rigorously, using a utility based approach traditionally employed in the analysis of health policy at the population level. The proposed statistical methodology will be broadly applicable to complex, large scale, data sets arising in phase III clinical trials and post-marketing studies.

Public Health Relevance

The proposed statistical methodology will be broadly applicable to the statistical analysis and interpretation of complex, large scale, data sets arising in phase III clinical trials and post-marketing studies. The research will improve public health be facilitating discovery of important benefits and risks of cancer treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA142538-02
Application #
8245191
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
2
Fiscal Year
2011
Total Cost
$120,354
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Lin, Jiaxing; Gresham, Jeremy; Wang, Tongrong et al. (2018) bcSeq: an R package for fast sequence mapping in high-throughput shRNA and CRISPR screens. Bioinformatics 34:3581-3583
Wu, Jing; de Castro, Mário; Schifano, Elizabeth D et al. (2018) Assessing covariate effects using Jeffreys-type prior in the Cox model in the presence of a monotone partial likelihood. J Stat Theory Pract 12:23-41
Mathur, Ravi; Rotroff, Daniel; Ma, Jun et al. (2018) Gene set analysis methods: a systematic comparison. BioData Min 11:8
Shi, Chengchun; Fan, Alin; Song, Rui et al. (2018) HIGH-DIMENSIONAL A-LEARNING FOR OPTIMAL DYNAMIC TREATMENT REGIMES. Ann Stat 46:925-957
Li, Wenqing; Chen, Ming-Hui; Wangy, Xiaojing et al. (2018) Bayesian Design of Non-Inferiority Clinical Trials via the Bayes Factor. Stat Biosci 10:439-459
Wang, Xiaofei; Zhou, Jingzhu; Wang, Ting et al. (2018) On Enrichment Strategies for Biomarker Stratified Clinical Trials. J Biopharm Stat 28:292-308
Psioda, Matthew A; Soukup, Mat; Ibrahim, Joseph G (2018) A practical Bayesian adaptive design incorporating data from historical controls. Stat Med 37:4054-4070
Lawson, Michael T; Cho, Hunyong; Choudhury, Arkopal et al. (2018) Discussion of Laber et al. ""Optimal treatment allocations in space and time for on-line control of an emerging infectious disease"". J R Stat Soc Ser C Appl Stat 67:779-780
Zhu, Anqi; Ibrahim, Joseph G; Love, Michael I (2018) Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics :
Liu, Yang; He, Qianchan; Sun, Wei (2018) Association analysis using somatic mutations. PLoS Genet 14:e1007746

Showing the most recent 10 out of 549 publications