Cord blood transplantation (CBT) is an increasingly effective treatment for patients with hematological malignancies for whom suitable HLA-matched donors are not available. If T cells that mediate graft verus leukemia (GVL) could be distinguished from those that mediate graft versus host disease (GVHD), more effective immunotherapy strategies could be developed. Our long-term goal is to improve the outcome of CBT for patients with AML by engineering donor T cells to increase GVL without increasing GVHD. We hypothesize that donor T-cells targeting leukemia-associated antigens (LAA), such as the HLA-A2-restricted PR1 peptide on AML, preferentially mediate GVL activity over GVHD and that cord blood (CB) donor-derived PR1-specific cytotoxic T lymphocytes (PR1-CTL) can be elicited and expanded ex vivo for clinical use to selectively induce GVL in CBT recipients. Thus, we have cloned high- and low-affinity PR1-specific T cell receptor-alphaBeta (TCR) heterodimers from PR1 vaccine clinical responders, which can be transduced into polyclonal T-cells to redirect antigen specificity and mediate antileukemic effects. We have also produced a monoclonal antibody with high affinity for a specific conformational epitope of PR1/HLA-A2 (8F4) that mediates potent and specific cytotoxicity against acute myeloid leukemia (AML), and a single chain Fv of 8F4 fused with CD3zeta + CD28 as a chimeric antigen receptor (CAR) will be used to gene modify T-cells to study GVL effects. In addition, the number of precursor PR1-CTL is ~1000-fold higher in CB compared to adult peripheral blood and CB PRI-CTL can be activated and expanded more than 5-fold in vitro. On the strength of these advances, we propose to (1) identify an optimal method to elicit and expand potent CB-derived PR1-CTL ex vivo by comparing (a) cell expansion from single CB units, (b) cell purification from multiple donors, (c) PR1-TCR-alphaBeta gene modification, and (d) 8F4-CAR gene modification;(2) use a xenogeneic mouse model to validate the potency of PR1-CTL against human AML in vivo to study the persistence and possible tolerance induction of PR1-CTL by AML, and to determine the spatial and temporal GVL effects, persistence, and possible tolerance of CB-derived PR1-CTL using bioluminescence and PET/CT imaging. Finally, based on the method identified to optimally obtain PR1-CTL, we will (3) test the clinical feasibility and safety of CB-derived PR1-CTL as adoptive cell therapy for AML patients after CBT.

Public Health Relevance

While CBT is potentially an effective treatment alternative for leukemia, poor immune reconstitution, GVHD, and disease relapse continue to be significant obstacles to successful outcomes. We will determine methods to improve the GVL effect, decrease the risk of relapse, and mitigate GVHD by adoptively transferring donor-derived antigen-specific T-cells to CBT recipients. Thus, combining targeted T-cell therapy with CBT may provide an effective alternative to leukemia patients at high risk for treatment failure.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
5P01CA148600-04
Application #
8730463
Study Section
Special Emphasis Panel (ZCA1-RPRB-J)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
4
Fiscal Year
2014
Total Cost
$115,490
Indirect Cost
$27,838
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Agha, Nadia H; Baker, Forrest L; Kunz, Hawley E et al. (2018) Vigorous exercise mobilizes CD34+ hematopoietic stem cells to peripheral blood via the ?2-adrenergic receptor. Brain Behav Immun 68:66-75
Yang, Tian-Hui; St John, Lisa S; Garber, Haven R et al. (2018) Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. J Immunol 201:1389-1399
Barrett, A John; Prockop, Susan; Bollard, Catherine M (2018) Virus-Specific T Cells: Broadening Applicability. Biol Blood Marrow Transplant 24:13-18
Trujillo-Ocampo, Abel; Cho, Hyun-Woo; Herrmann, Amanda C et al. (2018) Rapid ex vivo expansion of highly enriched human invariant natural killer T cells via single antigenic stimulation for cell therapy to prevent graft-versus-host disease. Cytotherapy 20:1089-1101
Simpson, Richard J; Bigley, Austin B; Agha, Nadia et al. (2017) Mobilizing Immune Cells With Exercise for Cancer Immunotherapy. Exerc Sport Sci Rev 45:163-172
Kerros, Celine; Tripathi, Satyendra C; Zha, Dongxing et al. (2017) Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells. J Biol Chem 292:10295-10305
Cruz, Conrad R Y; Bollard, Catherine M (2017) Adoptive Immunotherapy For Leukemia With Ex vivo Expanded T Cells. Curr Drug Targets 18:271-280
Robinson, Simon N; Thomas, Michael W; Simmons, Paul J et al. (2017) Non-fucosylated CB CD34+ cells represent a good target for enforced fucosylation to improve engraftment following cord blood transplantation. Cytotherapy 19:285-292
Houghtelin, Amy; Bollard, Catherine M (2017) Virus-Specific T Cells for the Immunocompromised Patient. Front Immunol 8:1272
Peters, Haley L; Tripathi, Satyendra C; Kerros, Celine et al. (2017) Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells. Cancer Immunol Res 5:319-329

Showing the most recent 10 out of 102 publications