Bladder cancer (BC) is a heterogeneous disease entity exhaling divergent phenotype, biological behavior and clinical outcome. About 70% of BC present as low-grade, superficial papillary tumors that are frequently recurrent but infrequently progress to high-grade muscle-invasive stages. The rest (~30%) of BC are high- grade and invasive at presentation, and they usually do have a prior history of low-grade, papillary tumors but are believed to arise de novo or derive from flat, high-grade carcinoma in situ lesions. Whether these two major phenotypic variants of BC are caused by distinct molecular alterations is of central importance in understanding and effectively managing BC. However, answer to this question remains elusive due to the lack of concerted research efforts. Over the past 15 years, we have been dissecting the molecular mechanisms of BC pathways by developing and analyzing genetically engineered mice via urothelium- specific gene activation or ablation or both. The resulting mouse models not only recapitulate many salient features of human BC, but yield new information regarding the cause-effect relationship between genes and pathways. The present proposal is designed to gain much deeper and broader insights into the combinatorial molecular events that together serve as the

Public Health Relevance

Normal bladder epithelial cells can be converted into two major forms of tumors, one that often recurs thus requiring multiple therapies but infrequently invades, and another that does not recur but is often lethal. Elucidating the molecular mechanisms underlying each type of bladder tumors will open doors to tumor-type- specific approaches for diagnosis, prevention and therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
1P01CA165980-01A1
Application #
8596896
Study Section
Special Emphasis Panel (ZCA1-RPRB-B (M2))
Project Start
2013-09-12
Project End
2018-08-31
Budget Start
2013-09-12
Budget End
2014-08-31
Support Year
1
Fiscal Year
2013
Total Cost
$319,939
Indirect Cost
$130,091
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Jin, Honglei; Sun, Wenrui; Zhang, Yuanmei et al. (2018) MicroRNA-411 Downregulation Enhances Tumor Growth by Upregulating MLLT11 Expression in Human Bladder Cancer. Mol Ther Nucleic Acids 11:312-322
Hua, Xiaohui; Xu, Jiheng; Deng, Xu et al. (2018) New compound ChlA-F induces autophagy-dependent anti-cancer effect via upregulating Sestrin-2 in human bladder cancer. Cancer Lett 436:38-51
Peng, Minggang; Wang, Jingjing; Zhang, Dongyun et al. (2018) PHLPP2 stabilization by p27 mediates its inhibition of bladder cancer invasion by promoting autophagic degradation of MMP2 protein. Oncogene :
Li, Xin; Tian, Zhongxian; Jin, Honglei et al. (2018) Decreased c-Myc mRNA Stability via the MicroRNA 141-3p/AUF1 Axis Is Crucial for p63? Inhibition of Cyclin D1 Gene Transcription and Bladder Cancer Cell Tumorigenicity. Mol Cell Biol 38:
Guo, Xirui; Huang, Haishan; Jin, Honglei et al. (2018) ISO, via Upregulating MiR-137 Transcription, Inhibits GSK3?-HSP70-MMP-2 Axis, Resulting in Attenuating Urothelial Cancer Invasion. Mol Ther Nucleic Acids 12:337-349
Weng, Mao-Wen; Lee, Hyun-Wook; Park, Sung-Hyun et al. (2018) Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proc Natl Acad Sci U S A 115:E6152-E6161
Yu, Yonghui; Jin, Honglei; Xu, Jiheng et al. (2018) XIAP overexpression promotes bladder cancer invasion in vitro and lung metastasis in vivo via enhancing nucleolin-mediated Rho-GDI? mRNA stability. Int J Cancer 142:2040-2055
Lee, Hyun-Wook; Park, Sung-Hyun; Weng, Mao-Wen et al. (2018) E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc Natl Acad Sci U S A 115:E1560-E1569
Jiang, Guosong; Huang, Chao; Li, Jingxia et al. (2017) Role of STAT3 and FOXO1 in the Divergent Therapeutic Responses of Non-metastatic and Metastatic Bladder Cancer Cells to miR-145. Mol Cancer Ther 16:924-935
Huang, Chao; Zeng, Xingruo; Jiang, Guosong et al. (2017) XIAP BIR domain suppresses miR-200a expression and subsequently promotes EGFR protein translation and anchorage-independent growth of bladder cancer cell. J Hematol Oncol 10:6

Showing the most recent 10 out of 65 publications