The purpose of this program project is to study the mechanisms of action of several drugs of abuse at multiple levels of the organism. These levels include the molecular, cellular, physiological/anatomical and behavioral, and the drugs studied include opioids, caffeine, and cocaine. While some of the individual projects are dedicated to elucidating in further detail the classical effects of these drugs, other projects seek to define and characterize novel effects, such as may be exerted on the immune system and on circadian rhythms. The University of Minnesota Medical School is an ideal environment for this multidisciplinary effort to understand drug abuse, because of the broad range of interests of the participating faculty and a strong institutional commitment. All the component PI's have committed themselves to work together through this program grant, and through monthly seminars and annual retreats, thus a great deal more communication and collaboration can be developed.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Research Program Projects (P01)
Project #
5P01DA008131-05
Application #
2377383
Study Section
Special Emphasis Panel (SRCD (24))
Project Start
1993-04-03
Project End
1998-02-28
Budget Start
1997-03-10
Budget End
1998-02-28
Support Year
5
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Pharmacology
Type
Schools of Medicine
DUNS #
168559177
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Kawai, Hideki; Raftery, Michael A (2010) Kinetics of agonist-induced intrinsic fluorescence changes in the Torpedo acetylcholine receptor. J Biochem 147:743-9
Kawai, Hideki; Dunn, Susan M J; Raftery, Michael A (2008) Epibatidine binds to four sites on the Torpedo nicotinic acetylcholine receptor. Biochem Biophys Res Commun 366:834-9
Carter, Chris R J; Cao, Liren; Kawai, Hideki et al. (2007) Chain length dependence of the interactions of bisquaternary ligands with the Torpedo nicotinic acetylcholine receptor. Biochem Pharmacol 73:417-26
Conti-Fine, B M; Navaneetham, D; Lei, S et al. (2000) Neuronal nicotinic receptors in non-neuronal cells: new mediators of tobacco toxicity? Eur J Pharmacol 393:279-94
Bollweg, G L; Sparber, S B (1999) Voltage associated with spontaneous embryonic motility in the developing chicken: an automated characterization during mid-late embryogenesis. Dev Psychobiol 34:5-19
Kawai, H; Carlson, B J; Okita, D K et al. (1999) Eserine and other tertiary amine interactions with Torpedo acetylcholine receptor postsynaptic membrane vesicles. Biochemistry 38:134-41
Wei, L N; Chang, L; HU, X (1999) Studies of the type I cellular retinoic acid-binding protein mutants and their biological activities. Mol Cell Biochem 200:69-76
Schrott, L M; Sweeney, W A; Bodensteiner, K E et al. (1999) Late embryonic ritanserin exposure fails to alter normal responses to immune system stimulation in young chicks. Pharmacol Biochem Behav 64:81-8
Macklin, K D; Maus, A D; Pereira, E F et al. (1998) Human vascular endothelial cells express functional nicotinic acetylcholine receptors. J Pharmacol Exp Ther 287:435-9
Maus, A D; Pereira, E F; Karachunski, P I et al. (1998) Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors. Mol Pharmacol 54:779-88

Showing the most recent 10 out of 50 publications