Activation of the parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (the PTH/PTHrP receptor or PTH1R) by its cognate ligands, PTH or PTHrP, initiates two parallel processes: 1) stimulation of intracellular second messengers leading to biologic effects on mineral ion homeostasis and bone cell development, differentiation, and maturation; and 2)phosphorylation of PTH1R, internalization of the receptor-ligand complexes and desensitization of the biologic responses mediated by this receptor. The physiological role of PTH1R phosphorylation, internalization and desensitization is not known. We have recently mapped the phosphorylation sites on PTH1R and developed a phosphorylation-deficient (pd) PTH1R which is defective in ligand-stimulated internalization. Using homologous recombination techniques we have """"""""knocked in"""""""" the mutant pdPTH1R to replace the normal PTH1R. We shall use the pdPTH1R knock in mouse model to understand the role of PTH1R phosphorylation, internalization and desensitization in calcium homeostasis in different physiological condition (Specific Aim 1). We shall also use in vitro cell line models to dissect the molecules involved in PTH1R phosphorylation and internalization (Specific Aim 2). Three naturally-occurring constitutively-active PTH1R mutants provide a unique opportunity to study the molecular mechanism of receptor regulation. The difference in their basal activity and agonist simulation may reflect intrinsic differences in phosphorylation and internalization. Understanding how these mutants are regulated will shed light into the molecular mechanisms of receptor phosphorylation, internalization and desensitization (Specific Aim 3). PTH analogs with unique binding and signaling properties, developed in Project I, will be tested for selective effects on internalization and desensitization. Identification of analogs which differentiate receptor activation from receptor internalization will provide a unique tool to understand the molecular mechanisms of receptor internalization and desensitization (Specific Aim 4).

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK011794-39
Application #
7325708
Study Section
Special Emphasis Panel (ZDK1)
Project Start
2006-12-01
Project End
2008-11-30
Budget Start
2006-12-01
Budget End
2007-11-30
Support Year
39
Fiscal Year
2007
Total Cost
$288,211
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Christov, Marta; Clark, Abbe R; Corbin, Braden et al. (2018) Inducible podocyte-specific deletion of CTCF drives progressive kidney disease and bone abnormalities. JCI Insight 3:
Dedic, Christopher; Hung, Tin Shing; Shipley, Alan M et al. (2018) Calcium fluxes at the bone/plasma interface: Acute effects of parathyroid hormone (PTH) and targeted deletion of PTH/PTH-related peptide (PTHrP) receptor in the osteocytes. Bone 116:135-143
Mizuhashi, Koji; Ono, Wanida; Matsushita, Yuki et al. (2018) Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563:254-258
Hanna, Patrick; Grybek, Virginie; Perez de Nanclares, Guiomar et al. (2018) Genetic and Epigenetic Defects at the GNAS Locus Lead to Distinct Patterns of Skeletal Growth but Similar Early-Onset Obesity. J Bone Miner Res 33:1480-1488
Wein, Marc N; Foretz, Marc; Fisher, David E et al. (2018) Salt-Inducible Kinases: Physiology, Regulation by cAMP, and Therapeutic Potential. Trends Endocrinol Metab 29:723-735
Bastepe, Murat (2018) GNAS mutations and heterotopic ossification. Bone 109:80-85
Grigelioniene, Giedre; Nevalainen, Pasi I; Reyes, Monica et al. (2017) A Large Inversion Involving GNAS Exon A/B and All Exons Encoding Gs? Is Associated With Autosomal Dominant Pseudohypoparathyroidism Type Ib (PHP1B). J Bone Miner Res 32:776-783
Balani, Deepak H; Ono, Noriaki; Kronenberg, Henry M (2017) Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J Clin Invest 127:3327-3338
Cheloha, Ross W; Chen, Bingming; Kumar, Niyanta N et al. (2017) Development of Potent, Protease-Resistant Agonists of the Parathyroid Hormone Receptor with Broad ? Residue Distribution. J Med Chem 60:8816-8833
Mitchell, Deborah M; Jüppner, Harald; Burnett-Bowie, Sherri-Ann M (2017) FGF23 Is Not Associated With Age-Related Changes in Phosphate, but Enhances Renal Calcium Reabsorption in Girls. J Clin Endocrinol Metab 102:1151-1160

Showing the most recent 10 out of 215 publications