The major goal of the Cell Biology Core is to facilitate the use of quantitative qualitative imaging techniques and in the analysis of transport processes at the cellular and molecular level. The range of imaging techniques which are applicable to the study of cells, tissues, whole organs and in wild type, transgenic and mutant animals have been greatly expanded. New technologies are now available for greater resolution of localization of specific target proteins as well as permitting vital microscopy where dynamic changes can be identified. These include immunocytochemistry, confocal microscopy, electron microscopy, in situ hybridization, uunbiased stereological morphometry, and vital microscopy. These techniques are extremely useful in cell biology and physiology but are not easily accessible to investigators without previous training or experience. In addition, the selection of the proper technique or combination of techniques requires experience in interpetation and knowledge of the limitations of the method. The core will provide expertise and assistance in the utilization of light, immunofluorescence, confocal, and electron microscopy with particular emphasis on phenotypic and pathologic analysis of transgenic models, immunocytochemistry, vital microscopy and image analysis. The facility will give access to these specialized techniques and to the equipment necessary to apply them and will form a focal point for collaboration between members of the program project. Specifically, the core will provide the facilities, service and education necessary for the efficient application of imaging techniques tailored to the individual research objectives of the various members.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
2P01DK017433-31
Application #
6725904
Study Section
Special Emphasis Panel (ZDK1-GRB-1 (M5))
Project Start
2003-09-30
Project End
2008-07-31
Budget Start
2003-09-30
Budget End
2004-07-31
Support Year
31
Fiscal Year
2003
Total Cost
$197,390
Indirect Cost
Name
Yale University
Department
Type
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Kim, Jun-Mo; Xu, Shuhua; Guo, Xiaoyun et al. (2018) Urinary bladder hypertrophy characteristic of male ROMK Bartter's mice does not occur in female mice. Am J Physiol Regul Integr Comp Physiol 314:R334-R341
Gassaway, Brandon M; Petersen, Max C; Surovtseva, Yulia V et al. (2018) PKC? contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proc Natl Acad Sci U S A 115:E8996-E9005
Gilder, Allison L; Chapin, Hannah C; Padovano, Valeria et al. (2018) Newly synthesized polycystin-1 takes different trafficking pathways to the apical and ciliary membranes. Traffic 19:933-945
Barber, Karl W; Muir, Paul; Szeligowski, Richard V et al. (2018) Encoding human serine phosphopeptides in bacteria for proteome-wide identification of phosphorylation-dependent interactions. Nat Biotechnol 36:638-644
Scholl, Ute I; Stölting, Gabriel; Schewe, Julia et al. (2018) CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 50:349-354
Barber, Karl W; Rinehart, Jesse (2018) The ABCs of PTMs. Nat Chem Biol 14:188-192
Barber, Karl W; Miller, Chad J; Jun, Jay W et al. (2018) Kinase Substrate Profiling Using a Proteome-wide Serine-Oriented Human Peptide Library. Biochemistry 57:4717-4725
Li, Jing; Hatano, Ryo; Xu, Shuhua et al. (2017) Gender difference in kidney electrolyte transport. I. Role of AT1a receptor in thiazide-sensitive Na+-Cl- cotransporter activity and expression in male and female mice. Am J Physiol Renal Physiol 313:F505-F513
Inoue, Kazunori; Balkin, Daniel M; Liu, Lijuan et al. (2017) Kidney Tubular Ablation of Ocrl/Inpp5b Phenocopies Lowe Syndrome Tubulopathy. J Am Soc Nephrol 28:1399-1407
Castañeda-Bueno, Maria; Arroyo, Juan Pablo; Zhang, Junhui et al. (2017) Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4. Proc Natl Acad Sci U S A 114:E879-E886

Showing the most recent 10 out of 303 publications