The long term objective of this proposal is to determine the underlying pathophysiology that leads to remarkably divergent cellular events in alpha vs. Beta thalassemia. Accelerated apoptosis or programmed cell death (PCD) is most likely responsible for intramedullary hemolysis in both human and murine beta thalassemia. Integrally associated with PCD, is the very specific alteration in the asymmetry of the phospholipid bilayer with an outward movement of phosphatidylserine (PS). The mechanism by which PS is exposed and recognized on thalassemic red cells or red cell precursors, rendering them ~edible~ to macrophages, is not clear. The principal objectives of this proposal are to define the contribution of enhanced PCD to ineffective erythropoiesis in beta thalassemia and further our understanding of the mechanism(s) responsible for enhanced PCD. In particular, we will discover how and why PCD leads to alterations in the phospholipid bilayer, resulting in PS exposure at the surface of affected cells, and how this in turn acts either alone or in concert with other signaling systems to lead to the recognition and removal of the affected erythroid precursors. To pursue these goals, we propose the following three specific aims: 1. Investigate programmed cell death in murine thalassemia, 2. Investigate the mechanisms responsible for the movement of PS from the inner to outer monolayer and 3. Determine the factors that render a cell with PS on its outer surface recognizable and removable. The murine alpha and beta thalassemic models we have created provide us with mice with graded degrees of clinical severity necessary to test the proposed hypotheses. We will use fluorescently labeled annexin V to quantitate, isolate and study the biochemical and functional characteristics of subpopulations of cells with PS on their surface, define the PCD driven mechanism for PS exposure, and identify factors modulating macrophagic recognition. We will explore our hypothesis that the heme/hemichromes associated with the globin chains mediate oxidant attack and play a role in PCD and macrophagic attack on apoptotic erythroid precursors. The successful accomplishment of these objectives should enable us to develop a detailed mechanistic understanding of the pathophysiology of an import human disease. The insights generated are also likely to further our understanding of the loss of PS asymmetry and the role of oxidative damage in programmed cell death.

Project Start
1999-03-01
Project End
1999-11-30
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
16
Fiscal Year
1999
Total Cost
Indirect Cost
Name
Lawrence Berkeley National Laboratory
Department
Type
DUNS #
078576738
City
Berkeley
State
CA
Country
United States
Zip Code
94720
Qu, Xiaoli; Zhang, Shijie; Wang, Shihui et al. (2018) TET2 deficiency leads to stem cell factor-dependent clonal expansion of dysfunctional erythroid progenitors. Blood 132:2406-2417
Huang, Yumin; Hale, John; Wang, Yaomei et al. (2018) SF3B1 deficiency impairs human erythropoiesis via activation of p53 pathway: implications for understanding of ineffective erythropoiesis in MDS. J Hematol Oncol 11:19
Ali, Abdullah Mahmood; Huang, Yumin; Pinheiro, Ronald Feitosa et al. (2018) Severely impaired terminal erythroid differentiation as an independent prognostic marker in myelodysplastic syndromes. Blood Adv 2:1393-1402
Yan, Hongxia; Hale, John; Jaffray, Julie et al. (2018) Developmental differences between neonatal and adult human erythropoiesis. Am J Hematol 93:494-503
Han, Xu; Zhang, Jieying; Peng, Yuanliang et al. (2017) Unexpected role for p19INK4d in posttranscriptional regulation of GATA1 and modulation of human terminal erythropoiesis. Blood 129:226-237
Gastou, Marc; Rio, Sarah; Dussiot, Michaƫl et al. (2017) The severe phenotype of Diamond-Blackfan anemia is modulated by heat shock protein 70. Blood Adv 1:1959-1976
Irianto, Jerome; Pfeifer, Charlotte R; Xia, Yuntao et al. (2016) SnapShot: Mechanosensing Matrix. Cell 165:1820-1820.e1
Pimentel, Harold; Parra, Marilyn; Gee, Sherry L et al. (2016) A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res 44:838-51
Ivanovska, Irena L; Shin, Jae-Won; Swift, Joe et al. (2015) Stem cell mechanobiology: diverse lessons from bone marrow. Trends Cell Biol 25:523-32
Dasbiswas, K; Majkut, S; Discher, D E et al. (2015) Substrate stiffness-modulated registry phase correlations in cardiomyocytes map structural order to coherent beating. Nat Commun 6:6085

Showing the most recent 10 out of 311 publications