The current submission of the Program Project Grant (PPG), Cellular Decisions of Differentiation in the Gl Tract integrates the efforts of three investigators (two basic science and one clinical) from three Departments at the University of Michigan. The central goals of the proposed studies generally remain the same as the prior two cycles: (a) To understand how gastric epithelial cells develop and maintain their identity by expressing or responding to developmental signaling pathways activated by the peptide morphogen sonic hedgehog (Shh) or the transmembrane signaling receptor Notch (b) To investigate how the patterns of cellular differentiation in the gastric corpus, gastric antrum and intestine use these signaling pathways to maintain homeostasis or respond to environmental stress, e.g., chronic inflammation. Subproject #1 entitled Modulation of myeloid cell phenotype by hedgehog signals will expand upon the intial translational observation that the Hedgehog target gene Glil expressed in myeloid cells modulates the epithelial response to inflammation. Subproject #2 entitled Role of Hedgehog signaling in chronic gastritis and metaplasia will examine the role of chronic inflammation, specifically proinflammatory cytokines in mediating changes in patterns of cellular differentiation, e.g., metaplasia in the gastric corpus and hyperplasia in the antrum. Subproject #3 entitled Notch Regulation of Gastric Epithelial Cell Homeostasis and Tumorigenesis will explore the effect of the Notch pathway on Lgr5+ stem cells in the antrum and its possible interaction with the Hedgehog pathway. The PPG will support one service core (Cell Biology Core) to efficiently, process, analyze and coordinate tissue samples and flow cytometric analysis between the three projects. In summary, the PPG will use a variety of different mouse models and cell or molecular -based approaches to understand how gastric and intestinal cells maintain their homeostasis, but then modify their cellular patterns of differentiation in response to chronic inflammation ultimately directing the cll towards a pro-proliferative phenotype.
The PPG brings together both basic and translational concepts to dissect the use developmental pathways, e.g.. Hedgehog and Notch signaling to execute cellular decisions for homeostasis versus pathologic responses to environmental stressors, e.g., bacterial infection, inflammation, chemical injury, which can segue to neoplastic transformation.
Razumilava, Nataliya; Gumucio, Deborah L; Samuelson, Linda C et al. (2018) Indian Hedgehog Suppresses Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 5:63-64 |
Mills, Jason C; Samuelson, Linda C (2018) Past Questions and Current Understanding About Gastric Cancer. Gastroenterology 155:939-944 |
Merchant, Juanita L (2018) Parietal Cell Death by Cytokines. Cell Mol Gastroenterol Hepatol 5:636-637 |
El-Zaatari, Mohamad; Bass, Adam J; Bowlby, Reanne et al. (2018) Indoleamine 2,3-Dioxygenase 1, Increased in Human Gastric Pre-Neoplasia, Promotes Inflammation and Metaplasia in Mice and Is Associated With Type II Hypersensitivity/Autoimmunity. Gastroenterology 154:140-153.e17 |
Merchant, Juanita L; Ding, Lin (2017) Hedgehog Signaling Links Chronic Inflammation to Gastric Cancer Precursor Lesions. Cell Mol Gastroenterol Hepatol 3:201-210 |
Al Menhali, Asma; Keeley, Theresa M; Demitrack, Elise S et al. (2017) Gastrin induces parathyroid hormone-like hormone expression in gastric parietal cells. Am J Physiol Gastrointest Liver Physiol 312:G649-G657 |
Sahoo, Nirakar; Gu, Mingxue; Zhang, Xiaoli et al. (2017) Gastric Acid Secretion from Parietal Cells Is Mediated by a Ca2+ Efflux Channel in the Tubulovesicle. Dev Cell 41:262-273.e6 |
Companioni Nápoles, Osmel; Tsao, Amy C; Sanz-Anquela, José Miguel et al. (2017) SCHLAFEN 5 expression correlates with intestinal metaplasia that progresses to gastric cancer. J Gastroenterol 52:39-49 |
Demitrack, Elise S; Samuelson, Linda C (2017) Notch as a Driver of Gastric Epithelial Cell Proliferation. Cell Mol Gastroenterol Hepatol 3:323-330 |
Saqui-Salces, Milena; Tsao, Amy C; Gillilland 3rd, Merritt G et al. (2017) Weight gain in mice on a high caloric diet and chronically treated with omeprazole depends on sex and genetic background. Am J Physiol Gastrointest Liver Physiol 312:G15-G23 |
Showing the most recent 10 out of 61 publications