The basis of the studies proposed in this project reflect the findings emanating from the initial and longstanding observations in our lab that regulatory T cells are activated following interactions with normal intestinal epithelial cells. These studies also documented defects in CD8+ Treg activation when epithelia cells derived from IBD patients were used to activate T cells. During the course of defining the repertoire of regulatory T cells present in normal and inflamed intestine during the last granting cycle, we identified a novel population of CD4+ FoxP3/IL17 double positive cells in the lamina propria of CD but not UC or normal patients. These cells share phenotypic characteristics of Th17 cells with secretion of IL17, IL22. IL21 while expressing high levels of CCR6, CD161, and RORyt. However, unlike conventional Th17 (cells and similar to FoxP3+ Tregs, they express high levels of CD101 and low levels of CD127, exhibit a similar TcR repertoire (BV usage) and are functionally suppressive in in vitro co-culture systems. FoxP3+IL-17 producing cells are imprinted for gut homing, as indicated by high levels of CCR6, CD103 and the integrin a4B7 expression. These cells secrete IFNy but not IL10 or TGFB. Thus they represent a novel cell population that could provide useful insights into lineage commitment of Tregs versus Th17 cells. We propose that these cells sit at the crossroads between Treg and Th17 cells and that further commitment to either lineage results from microenvironmental cues present in the tissues. The current proposal seeks to characterize these cells and define factors involved in their activation. Most importantly we aim to detemiine the microenvironmental cues that allow these cell to commit to a Th17 (more likely in CD) rather than a regulatory lineage. We will: 1) Define the functional and phenotypic properties of the CD4+ FoxP3/IL17 double positive cells derived from CD; 2) Define the microenvironmental cues leading to a transcriptional program that regulates lineage commitment of these cells. In collaboration with Dr. Xiong in Project 3 (IRF8), assess the interactions between FoxP3 and RORyt and determine factors that allow for negative regulation of both transcription factors. 3) Identify counterparts of these cells in murine models of ileitis/colitis or murine infection models in collaboration with Drs. Lira and Blander to establish the conditions required for their generation in vivo.

Public Health Relevance

The studies detailed in this proposal focus on a new T cell population that may have relevance to the development of Crohn's disease. Understanding how this cell gets activated will allow for new insights into therapy of this disease. Understanding how this cell gets activated will allow for new insights into therapy of this disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
5P01DK072201-10
Application #
8923242
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
2017-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
10
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Type
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Meisel, Marlies; Hinterleitner, Reinhard; Pacis, Alain et al. (2018) Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature 557:580-584
Blander, J Magarian (2018) Regulation of the Cell Biology of Antigen Cross-Presentation. Annu Rev Immunol 36:717-753
Blander, J Magarian; Barbet, Gaetan (2018) Exploiting vita-PAMPs in vaccines. Curr Opin Pharmacol 41:128-136
Barbet, Gaetan; Sander, Leif E; Geswell, Matthew et al. (2018) Sensing Microbial Viability through Bacterial RNA Augments T Follicular Helper Cell and Antibody Responses. Immunity 48:584-598.e5
Moretti, Julien; Blander, J Magarian (2017) Cell-autonomous stress responses in innate immunity. J Leukoc Biol 101:77-86
Blander, J Magarian; Longman, Randy S; Iliev, Iliyan D et al. (2017) Regulation of inflammation by microbiota interactions with the host. Nat Immunol 18:851-860
Blander, J Magarian (2017) The many ways tissue phagocytes respond to dying cells. Immunol Rev 277:158-173
Tang, Mei San; Bowcutt, Rowann; Leung, Jacqueline M et al. (2017) Integrated Analysis of Biopsies from Inflammatory Bowel Disease Patients Identifies SAA1 as a Link Between Mucosal Microbes with TH17 and TH22 Cells. Inflamm Bowel Dis 23:1544-1554
Moretti, Julien; Roy, Soumit; Bozec, Dominique et al. (2017) STING Senses Microbial Viability to Orchestrate Stress-Mediated Autophagy of the Endoplasmic Reticulum. Cell 171:809-823.e13
Campisi, Laura; Barbet, Gaetan; Ding, Yi et al. (2016) Apoptosis in response to microbial infection induces autoreactive TH17 cells. Nat Immunol 17:1084-92

Showing the most recent 10 out of 105 publications