A variety of animal species, principally rats and monkeys will be chronically exposed to ozone at concentrations in the high ambient range (0.2-0.8ppm). A multidisciplinary group will make integrated biochemical, bacteriological, physiological and pathological evaluations of effects. The findings will have relevance to the specific problem of air pollution and to a general understanding of pulmonary pathobiology. By plotting the relative levels of sensitivity of the various parameters studied and the effects observed, a basis will be provided for making predictions of possible long term consequences of photochemical smog on man. Comparison of effects in rats, monkeys and species such as dogs and cats should provide for more confident extrapolation to man and hence enable the setting of rational air quality criteria. A primary goal is to test critical hypothesis concerning biochemical, and cellular mechanisms responsible for the deleterious effects of the pollutants. Major pathogenetic and modifying factors of interest are: the role of lipid peroxidation in initiating damage; the phenomenon of adaptation; the sites of impairment in pulmonary alveolar macrophages; the sequence and nature of lesions resulting in the development of chronic obstructive pulmonary disease (bronchitis/emphysema) and interstitial fibrosis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
5P01ES000628-15
Application #
3095791
Study Section
Environmental Health Sciences Review Committee (EHS)
Project Start
1978-09-30
Project End
1988-08-31
Budget Start
1986-09-01
Budget End
1987-08-31
Support Year
15
Fiscal Year
1986
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
Schools of Veterinary Medicine
DUNS #
094878337
City
Davis
State
CA
Country
United States
Zip Code
95618
Crowley, Candace M; Fontaine, Justin H; Gerriets, Joan E et al. (2017) Early life allergen and air pollutant exposures alter longitudinal blood immune profiles in infant rhesus monkeys. Toxicol Appl Pharmacol 328:60-69
Lynn, Therese M; Molloy, Emer L; Masterson, Joanne C et al. (2016) SMAD Signaling in the Airways of Healthy Rhesus Macaques versus Rhesus Macaques with Asthma Highlights a Relationship Between Inflammation and Bone Morphogenetic Proteins. Am J Respir Cell Mol Biol 54:562-73
Hsia, Connie C W; Hyde, Dallas M; Weibel, Ewald R (2016) Lung Structure and the Intrinsic Challenges of Gas Exchange. Compr Physiol 6:827-95
Herring, Matt J; Avdalovic, Mark V; Lasley, Bill et al. (2016) Elderly Female Rhesus Macaques Preserve Lung Alveoli With Estrogen/Progesterone Therapy. Anat Rec (Hoboken) 299:973-8
Herring, M J; Putney, L F; St George, J A et al. (2015) Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs. Toxicol Appl Pharmacol 283:35-41
Van Winkle, Laura S; Bein, Keith; Anderson, Donald et al. (2015) Biological dose response to PM2.5: effect of particle extraction method on platelet and lung responses. Toxicol Sci 143:349-59
Madl, Amy K; Plummer, Laurel E; Carosino, Christopher et al. (2014) Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol 76:447-65
Herring, Matt J; Putney, Lei F; Wyatt, Gregory et al. (2014) Growth of alveoli during postnatal development in humans based on stereological estimation. Am J Physiol Lung Cell Mol Physiol 307:L338-44
Moore, Brian D; Hyde, Dallas M; Miller, Lisa A et al. (2014) Persistence of serotonergic enhancement of airway response in a model of childhood asthma. Am J Respir Cell Mol Biol 51:77-85
Murphy, Shannon R; Oslund, Karen L; Hyde, Dallas M et al. (2014) Ozone-induced airway epithelial cell death, the neurokinin-1 receptor pathway, and the postnatal developing lung. Am J Physiol Lung Cell Mol Physiol 307:L471-81

Showing the most recent 10 out of 62 publications