The long-range goals of this research are two-fold; to establish the mutagenic potential of selected environmental mutagens and to explore the molecular basis for recognition and repaired of damaged DNA. Excellent progress has been made during the past project period. Quantitative methods have been developed that allowed us to establish in vitro and in vivo the mutagenic profiles of defined DNA adducts. Fundamental principles have emerged that will facilitate analyses of mutational spectra produced by environmental mutagens. For example, using site-specific techniques, we can predict nucleotide sequence contexts of mutational hot spots. We also discovered that DNA polymerases differ strikingly from one another in their miscoding potential with respect to certain DNA adducts. We also describe a new pathway for repair of oxidative DNA damage in E. coli. In the next project period, we will seek to determine the mutagenic potential in vitro and in vivo for PhIP and 8-aminoguanine, a modified DNA base which accumulates in the liver of animals treated with 2- nitropropane. We will use our experimental systems to explore molecular mechanisms of base substitutions and deletion mutagenesis for abasic sites, aminofluorene adducts and four stereoisomers derived from benzo(a)pyrene. Part of this project is devoted to studies of DNA repair enzymes; we propose to isolate and purify homologs of Fpg protein and MutY protein from mammalian sources. Finally, we will study the interaction of a single zinc finger derived from Fpg protein with damaged DNA.
Showing the most recent 10 out of 136 publications