Epigenetic mechanisms act at the interface of genetic and environmental risk factors in autism. Project 2 is designed to investigate to focus on the epigenetic mark of DNA niethylation, as environmental toxins have been demonstrated to reduce global DNA methylation levels while methyl-donor nutrients can be protective. This project will make use primarily of human cord blood samples from the MARBLES study in order to test the hypothesis that epigenetic patterns laid down in eariy life that regulate synapse maturation and immune responses will be impaired in autism through interactions between genetic and environmental factors.
The first aim i s designed to perform a genome-wide analysis of DNA methylation and copy number variation and to study the association of differences in genetics and epigenetics with environmental exposures (from Project 1 and Core C) and nutrients.
The second aim will investigate methylation of a specific gene locus, FOXP3, as an epigenetic marker of regulatory T cells and will make use of immunology expertise and existing participant samples from both MARBLES and CHARGE from Project 3.
The third aim will test a multifactorial mechanistic model of transcription-induced epigenetic memory of perinatal gene x environment interactions at two specific loci, F0XP3 and FMR1, through interactions with Projects 3 and 4. Together these studies will increase understanding of the epigenetic interface between genetic and environmental risk factors in autism, leading to improved diagnosis, prevention, and therapies.

Public Health Relevance

How early life exposures can shape the difference between a normal developmental trajectory and one that leads to autism spectrum disorders is the critical question addressed by this proposal. This project uses both genome-wide and gene focused mechanistic approaches on human samples from a prospective epidemiological study in order to improve understanding, prevention, and treatment of autism spectrum disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
5P01ES011269-12
Application #
8667440
Study Section
Special Emphasis Panel (ZES1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
12
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Davis
Department
Type
DUNS #
City
Davis
State
CA
Country
United States
Zip Code
95618
Hart, Lynette A; Thigpen, Abigail P; Willits, Neil H et al. (2018) Affectionate Interactions of Cats with Children Having Autism Spectrum Disorder. Front Vet Sci 5:39
Philippat, Claire; Barkoski, Jacqueline; Tancredi, Daniel J et al. (2018) Prenatal exposure to organophosphate pesticides and risk of autism spectrum disorders and other non-typical development at 3 years in a high-risk cohort. Int J Hyg Environ Health 221:548-555
Jones, Karen L; Pride, Michael C; Edmiston, Elizabeth et al. (2018) Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Mol Psychiatry :
Rose, Destanie R; Yang, Houa; Serena, Gloria et al. (2018) Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav Immun 70:354-368
Zheng, Jing; Chen, Juan; Zou, Xiaohan et al. (2018) Saikosaponin d causes apoptotic death of cultured neocortical neurons by increasing membrane permeability and elevating intracellular Ca2+ concentration. Neurotoxicology 70:112-121
Shin, Hyeong-Moo; Schmidt, Rebecca J; Tancredi, Daniel et al. (2018) Prenatal exposure to phthalates and autism spectrum disorder in the MARBLES study. Environ Health 17:85
Keil, Kimberly P; Miller, Galen W; Chen, Hao et al. (2018) PCB 95 promotes dendritic growth in primary rat hippocampal neurons via mTOR-dependent mechanisms. Arch Toxicol 92:3163-3173
Zheng, Jing; McKinnie, Shaun M K; El Gamal, Abrahim et al. (2018) Organohalogens Naturally Biosynthesized in Marine Environments and Produced as Disinfection Byproducts Alter Sarco/Endoplasmic Reticulum Ca2+ Dynamics. Environ Sci Technol 52:5469-5478
Chen, Xiaopeng; Walter, Kyla M; Miller, Galen W et al. (2018) Simultaneous quantification of T4, T3, rT3, 3,5-T2 and 3,3'-T2 in larval zebrafish (Danio rerio) as a model to study exposure to polychlorinated biphenyls. Biomed Chromatogr 32:e4185
Jones, Karen L; Van de Water, Judy (2018) Maternal autoantibody related autism: mechanisms and pathways. Mol Psychiatry :

Showing the most recent 10 out of 327 publications