The mechanism of ribosome-catalyzed, messenger RNA-directed protein synthesis is fundamentally the same in all organisms, and it is important that it be fully understood for many reasons. First, protein synthesis is a major metabolic activity in all organisms. Second, novel RNA-dependent enzymology may be involved. Third, because so many antibiotics target bacterial ribosomes, an understanding of the details of the ribosomal phase of translation may have significant clinical implications. Since lack of atomic resolution information about ribosome conformation has serious limited progress in this area of inquiry for many years. The focus of the work proposed here is the determination of the structure of the ribosome and the complexes it forms with antibiotics and the macromolecules with which it interacts by X-ray crystallography. Four projects will be undertaken all in collaboration with R.A. Steitz to a greater or lesser extent. First, the effort to solve crystal structure of the large ribosomal subunit from Haloarcula marismortui, which is already well underway, will be brought to a conclusion. The crystals available diffract past A resolution, and interpretable electron density maps of the structure can be computed today to 5 A resolution. Second, crystals will be prepared of domains of the small ribosomal subunit, in hopes of obtaining information about the conformation of that subunit at resolutions significantly higher than those accessible using the crystals of intact small subunits currently available. Third, a program will be instituted the objectives of which is the determination of the crystal structures of isolated proteins from the large ribosomal subunit of H. marismortui, or of other archael species, to facilitate the interpretation of the electron density maps of the H. maris mortui 50 ribosomal subunit that are becoming available. Fourth, crystals will be prepared of ribosomes from eukaryotic species, with the ribosomes form yeast being the first objective.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
2P01GM022778-26
Application #
6477947
Study Section
Special Emphasis Panel (ZRG1)
Project Start
1976-04-01
Project End
2006-03-31
Budget Start
Budget End
Support Year
26
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
082359691
City
New Haven
State
CT
Country
United States
Zip Code
06520
Wang, Jimin; Liu, Zheng; Crabtree, Robert H et al. (2018) On the damage done to the structure of the Thermoplasma acidophilum proteasome by electron radiation. Protein Sci 27:2051-2061
Sherlock, Madeline E; Sadeeshkumar, Harini; Breaker, Ronald R (2018) Variant Bacterial Riboswitches Associated with Nucleotide Hydrolase Genes Sense Nucleoside Diphosphates. Biochemistry :
Harris, Kimberly A; Zhou, Zhiyuan; Peters, Michelle L et al. (2018) A second RNA-binding protein is essential for ethanol tolerance provided by the bacterial OLE ribonucleoprotein complex. Proc Natl Acad Sci U S A 115:E6319-E6328
Greenlee, Etienne B; Stav, Shira; Atilho, Ruben M et al. (2018) Challenges of ligand identification for the second wave of orphan riboswitch candidates. RNA Biol 15:377-390
Mirihana Arachchilage, Gayan; Sherlock, Madeline E; Weinberg, Zasha et al. (2018) SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches. RNA Biol 15:371-378
Wang, Jimin (2018) Determination of chemical identity and occupancy from experimental density maps. Protein Sci 27:411-420
Sherlock, Madeline E; Sudarsan, Narasimhan; Breaker, Ronald R (2018) Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems. Proc Natl Acad Sci U S A 115:6052-6057
Harris, Kimberly A; Breaker, Ronald R (2018) Large Noncoding RNAs in Bacteria. Microbiol Spectr 6:
Yang, Yang; Kang, Dongwei; Nguyen, Laura A et al. (2018) Structural basis for potent and broad inhibition of HIV-1 RT by thiophene[3,2-d]pyrimidine non-nucleoside inhibitors. Elife 7:
Lomakin, Ivan B; Stolboushkina, Elena A; Vaidya, Anand T et al. (2017) Crystal Structure of the Human Ribosome in Complex with DENR-MCT-1. Cell Rep 20:521-528

Showing the most recent 10 out of 143 publications