PROJECT 4 Neuroactive steroids are effective modulators of gamma-aminobutyric acid-A receptors (GABARs), augmenting the actions of GABA at low concentrations and directly activating GABAR chloride channels in the absence of GABA at higher concentrations. Other steroids, particularly those with charged substituents at the CS-position, are negative modulators of GABARs and either potentiators or inhibitors of N-methyl-D- aspartate receptors (NMDARs). Present evidence indicates that GABAR potentiation and NMDAR inhibition represent two key mechanisms in clinical anesthesia. Over the several years, we have developed tools that have helped us to probe the effects of neuroactive steroids on GABARs, including a series of novel steroid enantiomers and fluorescent steroids that have provided important new information about intracellular and intramembranous accumulation of these agents. One of the fluorescent steroids only potentiates GABARs when exposed to visible (-480 nm) light, offering the potential to develop a new class of GABAergic modulators that can be activated in specific regions of cells or brain. In the present proposal, we will extend our studies of neuroactive steroids by addressing four goals: 1. To examine membrane and receptor mechanisms contributing to the effects of GABA potentiating 3-alpha-hydroxysteroids;2. To examine membrane mechanisms contributing to the effects of C3-sulfated steroids and 3-beta-hydroxysteroids on GABARs;3. To examine mechanisms contributing to the effects of photoactive steroids on GABARs;and 4. To gain new information about structural requirements for steroids on GABARs and NMDARs. These studies will use a combination of physiological and cellular imaging methods to examine steroid effects in cultured rat hippocampal neurons, and HEK cells and Xenopus oocytes expressing defined GABAR subunits, and will involve a combination of structure-activity and mechanistic studies based upon our initial observations with the novel fluorescent and photoactive steroid analogues. These studies have the potential to provide new information about neuroactive steroid effects in the CMS and a better understanding of mechanisms involved in steroid-mediated anesthesia.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM047969-20
Application #
8305692
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
2013-07-31
Budget Start
2011-08-01
Budget End
2013-07-31
Support Year
20
Fiscal Year
2011
Total Cost
$348,405
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Budelier, Melissa M; Cheng, Wayland W L; Bergdoll, Lucie et al. (2017) Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1. J Biol Chem 292:9294-9304
Jiang, Xiaoping; Shu, Hong-Jin; Krishnan, Kathiresan et al. (2016) A clickable neurosteroid photolabel reveals selective Golgi compartmentalization with preferential impact on proximal inhibition. Neuropharmacology 108:193-206
Zhou, Yu; Xia, Xiao-Ming; Lingle, Christopher J (2015) Cadmium-cysteine coordination in the BK inner pore region and its structural and functional implications. Proc Natl Acad Sci U S A 112:5237-42
Li, Ping; Akk, Gustav (2015) Synaptic-type ?1?2?2L GABAA receptors produce large persistent currents in the presence of ambient GABA and anesthetic drugs. Mol Pharmacol 87:776-81
Purgert, Carolyn A; Izumi, Yukitoshi; Jong, Yuh-Jiin I et al. (2014) Intracellular mGluR5 can mediate synaptic plasticity in the hippocampus. J Neurosci 34:4589-98
Bandari, Suman; Chakraborty, Hirak; Covey, Douglas F et al. (2014) Membrane dipole potential is sensitive to cholesterol stereospecificity: implications for receptor function. Chem Phys Lipids 184:25-9
Eaton, Megan M; Lim, You Bin; Covey, Douglas F et al. (2014) Modulation of the human ?1 GABAA receptor by inhibitory steroids. Psychopharmacology (Berl) 231:3467-78
Zolkowska, Dorota; Dhir, Ashish; Krishnan, Kathiresan et al. (2014) Anticonvulsant potencies of the enantiomers of the neurosteroids androsterone and etiocholanolone exceed those of the natural forms. Psychopharmacology (Berl) 231:3325-32
Drews, A; Mohr, F; Rizun, O et al. (2014) Structural requirements of steroidal agonists of transient receptor potential melastatin 3 (TRPM3) cation channels. Br J Pharmacol 171:1019-32
Qian, Mingxing; Krishnan, Kathiresan; Kudova, Eva et al. (2014) Neurosteroid analogues. 18. Structure-activity studies of ent-steroid potentiators of ?-aminobutyric acid type A receptors and comparison of their activities with those of alphaxalone and allopregnanolone. J Med Chem 57:171-90

Showing the most recent 10 out of 193 publications