Our goal is to determine the basis for HIV-1 integrase function through an understanding of the molecular structure of full-length integrase with and without its DNA substrate. We seek to use this knowledge to facilitate development of new anti-HIV therapeutics against a new target. Combination drug therapy that blocks multiple steps in HIV virus replication will almost certainly be the only way to continue to make progress against HIV infections. Resistance to currently available drugs against viral reverse transcriptase, and protease is an ever-increasing problem. HIV-1 integrase, the third viral enzyme, also essential for viral replication, is a most attractive, validated, target for new anti-HIV drug development. This proposal builds on our development of a soluble, crystallizable form of full-length HIV-1 integrase, our recently published 2.68, resolution structure of the integrase catalytic core and C-terminal domains, and our 1.68, resolution structure of the isolated catalytic core domain, in combination with our ongoing efforts to identify new small molecule inhibitors of integrase.
Our first aim i s to determine the arrangement of all the functional domains of full length integrase, initially tractable at low (-68,) resolution. Using this structure, and the high resolution structures of its domains as our guide, our second aim seeks progressively higher resolution structures by modifying contacts at the crystal lattice interface.
Our third aim i nvolves extensive attempts to generate co- crystals involving HIV-1 integrase and DNA constructs that mimic intermediates in the integration event. These three structural aims should advance significantly our understanding of the mechanism of integrase function and provide the ideal template for developing new integrase inhibitors. As such, our fourth aim is to harness structural and computational methods to develop inhibitors of integrase as drug leads. Inhibitor target sites include the enzyme active site and three non-active site locations. The latter include the dimer interface, the flexible linker connecting the core and C-terminal domains, and the viral DNA binding platform. Inhibitor co-crystallization with multiple crystal forms of the core, multidomain, and DNA-complexes will define inhibitor mechanisms of binding and action. Our fifth aim is to use in vitro and cell-based assays to test the biological hypotheses generated from our structural data and to test and validate inhibitor mechanisms of action.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
2P01GM056531-06
Application #
6553659
Study Section
Special Emphasis Panel (ZRG1)
Project Start
1997-09-01
Project End
2007-08-31
Budget Start
Budget End
Support Year
6
Fiscal Year
2002
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
073133571
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Ohol, Yamini M; Goetz, David H; Chan, Kaman et al. (2010) Mycobacterium tuberculosis MycP1 protease plays a dual role in regulation of ESX-1 secretion and virulence. Cell Host Microbe 7:210-20
Lang, P Therese; Brozell, Scott R; Mukherjee, Sudipto et al. (2009) DOCK 6: combining techniques to model RNA-small molecule complexes. RNA 15:1219-30
Lim, Mark D; Craik, Charles S (2009) Using specificity to strategically target proteases. Bioorg Med Chem 17:1094-100
Daugherty, Matthew D; D'Orso, Ivan; Frankel, Alan D (2008) A solution to limited genomic capacity: using adaptable binding surfaces to assemble the functional HIV Rev oligomer on RNA. Mol Cell 31:824-34
Graves, Alan P; Shivakumar, Devleena M; Boyce, Sarah E et al. (2008) Rescoring docking hit lists for model cavity sites: predictions and experimental testing. J Mol Biol 377:914-34
Raorane, Digvijay A; Lim, Mark D; Chen, Fanqing Frank et al. (2008) Quantitative and label-free technique for measuring protease activity and inhibition using a microfluidic cantilever array. Nano Lett 8:2968-74
Goetz, D H; Choe, Y; Hansell, E et al. (2007) Substrate specificity profiling and identification of a new class of inhibitor for the major protease of the SARS coronavirus. Biochemistry 46:8744-52
Ioanoviciu, Alexandra; Yukl, Erik T; Moenne-Loccoz, Pierre et al. (2007) DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis. Biochemistry 46:4250-60
Yukl, Erik T; Ioanoviciu, Alexandra; de Montellano, Paul R Ortiz et al. (2007) Interdomain interactions within the two-component heme-based sensor DevS from Mycobacterium tuberculosis. Biochemistry 46:9728-36
He, Xin; Alian, Akram; Ortiz de Montellano, Paul R (2007) Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg Med Chem 15:6649-58

Showing the most recent 10 out of 80 publications