General anesthetics are widely used during surgery and other clinical procedures, yet they are extremely dangerous and their mechanisms remain poorly understood. Understanding their actions at the molecular level will enable development of new drugs with more therapeutic specificity. The overall aim of this project is to define the mechanisms of potent general anesthetics at known therapeutic targets: synaptic and extrasynaptic GABAA receptors. Photolabeling, structural homology modeling, mutant studies, and mechanistic analysis have established structural and functional models for etomidate actions at synaptic aiP2Y2L receptors, providing a new paradigm for other potent anesthetics such as propofol and barbiturates, and extra-synaptic GABAARS containing different subunits. Our working hypothesis is that at synaptic cci(32/372 and extrasynaptic OAPSS GABAA receptors, different potent anesthetics bind to distinct sub-regions of intra-membrane pockets formed at a-p subunit interfaces, with each subunit contributing a channel-lining transmembrane M2 domain and one other: a-M1 and P-M3. Anesthetic binding facilitates rearrangement of these pockets, stabilizing open channel states, thereby reducing neuronal activity. We propose to electrophysiologically study expressed GABAARS of defined subunit composition, developing a detailed mechanism of anesthetic actions at the macrocurrent level and determining how structural changes in the putative drug pockets affect anesthetic interactions and channel gating.
Specific Aim 1 is to investigate anesthetic-photolabeled amino acids in aip2/3y2L (synaptic) GABAARS and their roles in channel gating and the affinity/efficacy of etomidate, propofol, and pentobarbital. Mutagenesis, including cysteine mutagenesis and state-dependent modification, together with electrophysiological analysis based on an equilibrium co? agonist gating model will be used.
Specific Aim 2 is to build an allosteric-kinetic model for etomidate modulation of aiP2/3'y2L GABAARS and to develop allosteric co-agonist models for propofol and pentobarbital. Macrocurrent kinetic electrophysiology will be performed using an """"""""artificial synapse"""""""" for rapid application of GABA and anesthetics, and kinetic models will be assessed for their ability to quantitatively account for the data.
Specific Aim 3 is to extend the above approaches to a4p35 (extrasynaptic) GABAARS.
Specific Aim 4 is to collaborate with other PPG projects by assessing new photolabel anesthetics and guiding time-resolved photolabeling experiments.

Public Health Relevance

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM058448-15
Application #
8532916
Study Section
Special Emphasis Panel (ZGM1-PPBC-0)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
15
Fiscal Year
2013
Total Cost
$213,670
Indirect Cost
$67,834
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Zhou, Xiaojuan; Desai, Rooma; Zhang, Yinghui et al. (2018) High-level production and purification in a functional state of an extrasynaptic gamma-aminobutyric acid type A receptor containing ?4?3? subunits. PLoS One 13:e0191583
Ziemba, Alexis M; Szabo, Andrea; Pierce, David W et al. (2018) Alphaxalone Binds in Inner Transmembrane ?+-?- Interfaces of ?1?3?2 ?-Aminobutyric Acid Type A Receptors. Anesthesiology 128:338-351
Forman, Stuart A (2018) Combining Mutations and Electrophysiology to Map Anesthetic Sites on Ligand-Gated Ion Channels. Methods Enzymol 602:369-389
Woll, Kellie A; Zhou, Xiaojuan; Bhanu, Natarajan V et al. (2018) Identification of binding sites contributing to volatile anesthetic effects on GABA type A receptors. FASEB J 32:4172-4189
McGrath, Megan; Yu, Zhiyi; Jayakar, Selwyn S et al. (2018) Etomidate and Etomidate Analog Binding and Positive Modulation of ?-Aminobutyric Acid Type A Receptors: Evidence for a State-dependent Cutoff Effect. Anesthesiology 129:959-969
Feng, Hua-Jun; Forman, Stuart A (2018) Comparison of ??? and ??? GABAA receptors: Allosteric modulation and identification of subunit arrangement by site-selective general anesthetics. Pharmacol Res 133:289-300
McGrath, Megan; Ma, Celena; Raines, Douglas E (2018) Dimethoxy-etomidate: A Nonhypnotic Etomidate Analog that Potently Inhibits Steroidogenesis. J Pharmacol Exp Ther 364:229-237
Ma, Celena; Pejo, Ervin; McGrath, Megan et al. (2017) Competitive Antagonism of Anesthetic Action at the ?-Aminobutyric Acid Type A Receptor by a Novel Etomidate Analog with Low Intrinsic Efficacy. Anesthesiology 127:824-837
Jounaidi, Youssef; Cotten, Joseph F; Miller, Keith W et al. (2017) Tethering IL2 to Its Receptor IL2R? Enhances Antitumor Activity and Expansion of Natural Killer NK92 Cells. Cancer Res 77:5938-5951
Yu, Zhiyi; Cohen, Jonathan B (2017) Enantiomeric barbiturates bind distinct inter- and intrasubunit binding sites in a nicotinic acetylcholine receptor (nAChR). J Biol Chem 292:17258-17271

Showing the most recent 10 out of 116 publications