A common model of the mechanism of presynaptic and other intracellular membrane fusions is that the assembly of the SNARE core complex drives the approach and merger of the membranes that are to be fused. The assembly of the core complex has been studied primarily in solution and numerous features of intracellular membrane fusion have been inferred from analogies with viral fusion proteins. Therefore, several questions must be addressed in order to understand how presynaptic membrane fusion machines work at the molecular structural level. Are the SNARE assembly reactions the same on membrane surfaces as in solution? How and to what extent does the assembly of the SNARE core complex reduce the distance between the two membranes that are to be fused? How are the stoichiometries of t-SNARE receptors regulated on membrane surfaces and what are the reactive species? How is the force transduced from the complex into the two fusing membranes and what structural transformations of protein and lipid need to occur at the membrane surfaces to get two lipid bilayers to fuse? What are the roles of accessory proteins and specialized membrane lipids in this process? The goal of this project is to answer these questions by determining the general dynamic architecture of the SNARE complex as it forms on the surface of and in between membranes. Novel microscopic and spectroscopic approaches will be developed to achieve this goal and to test several sub-hypotheses of the general SNARE hypothesis of presynaptic membrane fusion.
Four specific aims will be pursued:
In aims 1 and 2, the dynamic architectures of various intermediates of SNARE complex assembly will be assessed in plasma membrane sheet and reconstituted membrane preparations, respectively; the role of cholesterol and phosphatidylinositol-4,5-biphosphate on SNARE complex assembly will be examined in specific aim 3; and, the structures of SNARE domains that are potentially important in force transduction will be determined in various lipid backgrounds in specific aim 4.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM072694-03
Application #
7393831
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
3
Fiscal Year
2007
Total Cost
$264,176
Indirect Cost
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Nyenhuis, Sarah B; Cafiso, David S (2018) Choice of reconstitution protocol modulates the aggregation state of full-length membrane-reconstituted synaptotagmin-1. Protein Sci 27:1008-1012
Yavuz, Halenur; Kattan, Iman; Hernandez, Javier M et al. (2018) Arrest of trans-SNARE zippering uncovers loosely and tightly docked intermediates in membrane fusion. J Biol Chem 293:8645-8655
Liang, Binyong; Tamm, Lukas K (2018) Solution NMR of SNAREs, complexin and ?-synuclein in association with membrane-mimetics. Prog Nucl Magn Reson Spectrosc 105:41-53
Hussain, Syed Saad; Harris, Megan T; Kreutzberger, Alex J B et al. (2018) Control of insulin granule formation and function by the ABC transporters ABCG1 and ABCA1 and by oxysterol binding protein OSBP. Mol Biol Cell 29:1238-1257
Blackburn, Matthew R; Hubbard, Caitlin; Kiessling, Volker et al. (2018) Distinct reaction mechanisms for hyaluronan biosynthesis in different kingdoms of life. Glycobiology 28:108-121
Witkowska, Agata; Jablonski, Lukasz; Jahn, Reinhard (2018) A convenient protocol for generating giant unilamellar vesicles containing SNARE proteins using electroformation. Sci Rep 8:9422
Kiessling, Volker; Kreutzberger, Alex J B; Liang, Binyong et al. (2018) A molecular mechanism for calcium-mediated synaptotagmin-triggered exocytosis. Nat Struct Mol Biol 25:911-917
Kreutzberger, Alex J B; Kiessling, Volker; Liang, Binyong et al. (2017) Asymmetric Phosphatidylethanolamine Distribution Controls Fusion Pore Lifetime and Probability. Biophys J 113:1912-1915
Tamm, Lukas K (2017) Special Issue on Liposomes, Exosomes, and Virosomes. Biophys J 113:E1
Jakhanwal, Shrutee; Lee, Chung-Tien; Urlaub, Henning et al. (2017) An activated Q-SNARE/SM protein complex as a possible intermediate in SNARE assembly. EMBO J 36:1788-1802

Showing the most recent 10 out of 76 publications