Chemotaxis is the directed movement of cells in a chemical gradient. It plays a major role in a large number of important biological processes, including embryology; wound healing, and cancer metastasis. The main aim of this Program Project is to extend our quantitative studies of chemotaxis using the model system Dictyostelium discoideum. Specifically, we will investigate the chemotactic process by dividing it into three projects with distinct timescales: 1) Directional sensing: the first response (0-10 s) of a cell following the exposure to an external Chemoattractant gradient, 2) Polarity: the subsequent (10-45 s) reorganization of the cytoskeleton, leading to an asymmetric (polarized) cell, and 3) Motility: the eventual (> 45 s) process of cell movement. For all projects, we will use a combination of quantitative experiments, aided by the use of microfluidic devices, and modeling approaches to further our insights into the mechanisms of eukaryotic chemotaxis.
Yue, Haicen; Camley, Brian A; Rappel, Wouter-Jan (2018) Minimal Network Topologies for Signal Processing during Collective Cell Chemotaxis. Biophys J 114:2986-2999 |
Camley, Brian A (2018) Collective gradient sensing and chemotaxis: modeling and recent developments. J Phys Condens Matter 30:223001 |
Tu, Yuhai; Rappel, Wouter-Jan (2018) Adaptation of Living Systems. Annu Rev Condens Matter Phys 9:183-205 |
Camley, Brian A; Rappel, Wouter-Jan (2017) Physical models of collective cell motility: from cell to tissue. J Phys D Appl Phys 50: |
Camley, Brian A; Rappel, Wouter-Jan (2017) Cell-to-cell variation sets a tissue-rheology-dependent bound on collective gradient sensing. Proc Natl Acad Sci U S A 114:E10074-E10082 |
Rappel, Wouter-Jan; Edelstein-Keshet, Leah (2017) Mechanisms of Cell Polarization. Curr Opin Syst Biol 3:43-53 |
Camley, Brian A; Zhao, Yanxiang; Li, Bo et al. (2017) Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry. Phys Rev E 95:012401 |
Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C et al. (2016) Cooperative cell motility during tandem locomotion of amoeboid cells. Mol Biol Cell 27:1262-71 |
Bhowmik, Arpan; Rappel, Wouter-Jan; Levine, Herbert (2016) Excitable waves and direction-sensing in Dictyostelium discoideum: steps towards a chemotaxis model. Phys Biol 13:016002 |
Kulawiak, Dirk Alexander; Camley, Brian A; Rappel, Wouter-Jan (2016) Modeling Contact Inhibition of Locomotion of Colliding Cells Migrating on Micropatterned Substrates. PLoS Comput Biol 12:e1005239 |
Showing the most recent 10 out of 58 publications