The purpose of this Core is to provide bioinformatic analysis of transcriptomic, DNA-protein interactions and Chromatin Conformation Capture projects. Next-generation sequencers have transformed genomic research, yet the analysis of these data remains a bottleneck. Our Core will provide the essential data analysis service to render these data accessible and interpretable to the members of this Program Project. The PI and staff of this Core have extensive experience in the analysis of genomic data, as well as familiarity with the underlying biology of the associated projects. Despite the fact that microarray and sequencing cores exist at UCLA, none of these provide data analysis as a service. Therefore the typical biology group that does not have internal computational expertise is often left with data and no ability to interpret it. The Core we are proposing here will remove this impediment so that all the groups within this Program Project will be able to not only collect sequencing data from their samples, but also obtain processed and analyzed data that can be directly interpreted by researchers without computational expertise. This functionality should render genomics research far more accessible to all members of this Program Project. We will also work with computationally experienced researchers in each lab of this Program to refine analysis tools.
The Aims of this Core are: 1. Analysis of RNA-seq data: we will provide quantification and variant detection analyses of RNA-seq data. 2. Analysis of ChlP-seq data: we will provide the location of peaks, average peak distributions and motifs. 3. Analysis of 4C data: we will provide the locations of domains that interact with """"""""bait"""""""" loci, and analyze their properties with other genomic data. 4. Data display on the UCSC genome browser: in all cases, this core will also load genome-wide data onto our installation of the UCSC genome browser so that users can see at single base resolution the data generated from each sample. We will also upload data and analysis tools to the Wiki site for exchange. 5. Data quality metrics: we will generate quality metrics for sequence data to provide an estimate of the quality of the sample.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM099134-04
Application #
8710267
Study Section
Special Emphasis Panel (ZGM1-GDB-8)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
4
Fiscal Year
2014
Total Cost
$247,110
Indirect Cost
$98,501
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Pasque, Vincent; Karnik, Rahul; Chronis, Constantinos et al. (2018) X Chromosome Dosage Influences DNA Methylation Dynamics during Reprogramming to Mouse iPSCs. Stem Cell Reports 10:1537-1550
Ohashi, Minori; Korsakova, Elena; Allen, Denise et al. (2018) Loss of MECP2 Leads to Activation of P53 and Neuronal Senescence. Stem Cell Reports 10:1453-1463
Kaeding, Kelsey E; Zaret, Kenneth S (2018) Microsatellite enhancers can be targeted to impair tumorigenesis. Genes Dev 32:991-992
Allison, Thomas F; Smith, Andrew J H; Anastassiadis, Konstantinos et al. (2018) Identification and Single-Cell Functional Characterization of an Endodermally Biased Pluripotent Substate in Human Embryonic Stem Cells. Stem Cell Reports 10:1895-1907
Sereti, Konstantina-Ioanna; Nguyen, Ngoc B; Kamran, Paniz et al. (2018) Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nat Commun 9:754
Di Stefano, Bruno; Ueda, Mai; Sabri, Shan et al. (2018) Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. Nat Methods 15:732-740
Sun, Fei; Chronis, Constantinos; Kronenberg, Michael et al. (2018) Promoter-Enhancer Communication Occurs Primarily within Insulated Neighborhoods. Mol Cell :
Bar-Nur, Ori; Gerli, Mattia F M; Di Stefano, Bruno et al. (2018) Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors. Stem Cell Reports 10:1505-1521
Xie, Yuan; Lowry, William E (2018) Manipulation of neural progenitor fate through the oxygen sensing pathway. Methods 133:44-53
Brumbaugh, Justin; Di Stefano, Bruno; Wang, Xiuye et al. (2018) Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling. Cell 172:629-631

Showing the most recent 10 out of 64 publications