The overall goals of this project are to identify the genes responsible for all the peroxisome biogenesis disorders (PBD) complememtation groups and to understand their role in peroxisome assembly. We plan to continue our studies of the role of PMP70 and related ABC transporters in the peroxisomal membrane as well as identify and characterize new genes necessary for peroxisome biogenesis. In this regard, currently, we are aware of at least 11 PBD complementation groups, two of which (CG 2 and 10) are already explained at the molecular level. To identify the remaining 9 or more genes responsible for the PBD we will use a variety of strategies to isolate candidate PBD genes taking advantage of the large collection of well characterized PBD patient materials assembled during the previous years of this Program Project as well as resources developed to test candidate cDNAs and conform their role in a specific PBD complementation group.

Project Start
2000-01-01
Project End
2000-12-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
23
Fiscal Year
2000
Total Cost
$325,213
Indirect Cost
Name
Hugo W. Moser Research Institute Kennedy Krieger
Department
Type
DUNS #
167202410
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C et al. (2012) Activation of the stress proteome as a mechanism for small molecule therapeutics. Hum Mol Genet 21:4237-52
Brose, Rebecca Deering; Avramopoulos, Dimitri; Smith, Kirby D (2012) SOD2 as a potential modifier of X-linked adrenoleukodystrophy clinical phenotypes. J Neurol 259:1440-7
Steinberg, S J; Snowden, A; Braverman, N E et al. (2009) A PEX10 defect in a patient with no detectable defect in peroxisome assembly or metabolism in cultured fibroblasts. J Inherit Metab Dis 32:109-19
Watkins, Paul A; Maiguel, Dony; Jia, Zhenzhen et al. (2007) Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome. J Lipid Res 48:2736-50
Jia, Zhenzhen; Moulson, Casey L; Pei, Zhengtong et al. (2007) Fatty acid transport protein 4 is the principal very long chain fatty acyl-CoA synthetase in skin fibroblasts. J Biol Chem 282:20573-83
Eichler, Florian; Mahmood, Asif; Loes, Daniel et al. (2007) Magnetic resonance imaging detection of lesion progression in adult patients with X-linked adrenoleukodystrophy. Arch Neurol 64:659-64
Lu, Jyh-Feng; Barron-Casella, Emily; Deering, Rebecca et al. (2007) The role of peroxisomal ABC transporters in the mouse adrenal gland: the loss of Abcd2 (ALDR), Not Abcd1 (ALD), causes oxidative damage. Lab Invest 87:261-72
Moser, Hugo W; Mahmood, Asif; Raymond, Gerald V (2007) X-linked adrenoleukodystrophy. Nat Clin Pract Neurol 3:140-51
Jia, Zhenzhen; Pei, Zhengtong; Maiguel, Dony et al. (2007) The fatty acid transport protein (FATP) family: very long chain acyl-CoA synthetases or solute carriers? J Mol Neurosci 33:25-31
Moser, Hugo W (2006) Therapy of X-linked adrenoleukodystrophy. NeuroRx 3:246-53

Showing the most recent 10 out of 167 publications