It has been postulated that glutamate levels in the interstitial space are maintained at low levels to prevent excitotoxicity. This is critical since the developing brain has increased sensitivity to excitotoxicity due to up regulation of excitatory amino acid receptors. Elevated extracellular glutamate in perinatal hypoxia/ischemia increases only about 3 fold, yet is a major cause of mortality and morbidity. Survivors are often left with severe, permanent neurological impairment. However, we postulate that a low level of glutamate is necessary in the interstitial space. Baseline levels of glutamate have been shown to interact with metabotropic receptors. This project will examine mechanisms by which extracellular glutamate is generated in both perinatal and adult brain in the normal and in the traumatized perinatal brain following an episode of hypoxia/ischemia. Preliminary results indicate that infusion of glutamine into the rat and mouse brain by microdialysis markedly increases the concentration of extracellular glutamate to excitotoxic levels and that it is synthesized in the extracellular space from glutamine. The concentration of extracellular glutamine in brain is normally 200 -300 mu M providing a ready precursor. We hypothesize that under normal conditions the primary mechanism for extracellular glutamate synthesis is maleate activated glutaminase (MAG), a side reaction of the ectoenzyme gamma-glutamyl transpeptidase (gamma-GTP). We hypothesize a second mechanism predominates in trauma. We propose that intramitochondrial phosphate dependent glutaminase (PDG) is released (or exposed) from damaged cells and converts glutamine to glutamate resulting in excitotoxicity and cell death days after the initial traumatic event. These enzymes may also play a role in conditions such as elevated ammonia. We will determine the enzymatic mechanism for extracellular glutamate formation in normal and 7-day old hypoxic-ischemic rat brain, adult rats under conditions of ammonia toxicity, mice deficient in the enzyme gamma-GTP, and in neuronal cell cultures. Studies will utilize microdialysis and cell culture in the presence and absence of effectors of the enzymes involved. It is anticipated that these studies will lead to new approaches in the care of infants that have experienced hypoxic or ischemic injury during infancy.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD016596-23
Application #
7367924
Study Section
Pediatrics Subcommittee (CHHD)
Project Start
Project End
Budget Start
2007-02-01
Budget End
2008-01-31
Support Year
23
Fiscal Year
2007
Total Cost
$292,566
Indirect Cost
Name
University of Maryland Baltimore
Department
Type
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Jaber, Sausan M; Bordt, Evan A; Bhatt, Niraj M et al. (2018) Sex differences in the mitochondrial bioenergetics of astrocytes but not microglia at a physiologically relevant brain oxygen tension. Neurochem Int 117:82-90
Ferreira, Gustavo C; McKenna, Mary C (2017) L-Carnitine and Acetyl-L-carnitine Roles and Neuroprotection in Developing Brain. Neurochem Res 42:1661-1675
Tang, Shiyu; Xu, Su; Lu, Xin et al. (2016) Neuroprotective Effects of Acetyl-L-Carnitine on Neonatal Hypoxia Ischemia-Induced Brain Injury in Rats. Dev Neurosci 38:384-396
Demarest, Tyler G; Schuh, Rosemary A; Waddell, Jaylyn et al. (2016) Sex-dependent mitochondrial respiratory impairment and oxidative stress in a rat model of neonatal hypoxic-ischemic encephalopathy. J Neurochem 137:714-29
Waddell, Jaylyn; Hanscom, Marie; Shalon Edwards, N et al. (2016) Sex differences in cell genesis, hippocampal volume and behavioral outcomes in a rat model of neonatal HI. Exp Neurol 275 Pt 2:285-95
Demarest, Tyler G; McCarthy, Margaret M (2015) Sex differences in mitochondrial (dys)function: Implications for neuroprotection. J Bioenerg Biomembr 47:173-88
McKenna, Mary C; Rae, Caroline D (2015) A new role for ?-ketoglutarate dehydrogenase complex: regulating metabolism through post-translational modification of other enzymes. J Neurochem 134:3-6
Xu, Su; Waddell, Jaylyn; Zhu, Wenjun et al. (2015) In vivo longitudinal proton magnetic resonance spectroscopy on neonatal hypoxic-ischemic rat brain injury: Neuroprotective effects of acetyl-L-carnitine. Magn Reson Med 74:1530-42
Pershing, Michelle L; Bortz, David M; Pocivavsek, Ana et al. (2015) Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: implications for schizophrenia. Neuropharmacology 90:33-41
McKenna, Mary C; Scafidi, Susanna; Robertson, Courtney L (2015) Metabolic Alterations in Developing Brain After Injury: Knowns and Unknowns. Neurochem Res 40:2527-43

Showing the most recent 10 out of 176 publications