Core A, The International skeletal Dysplasia Registry (ISDR) was established 35 years ago and currently has over 14,700 cases in a secure, web-accessible, computerized database with an anonymized code for each ndividual. The Registry is the largest resource in the world for clinical and research material on the skeletal dysplasias and serves as the backbone of the research program. The materials include clinical information, radiographs, fixed and frozen chondro-osseous tissue samples, histology slides, electron micrographs, cultured fibroblasts and chondrocytes, lymphoblastoid cell lines, and DMA. The materials obtained by the Registry are extensively used by all the Projects as well as by numerous other collaborators. Radiographic and chondro-osseous morphological findings are encoded in the database in a searchable format for rapid identification of cases with similar findings. Cases entered into the Registry include patients seen in our Short Stature Clinics as well as cases submitted from around the world.
The Specific Aims of this Core include: 1) Expansionof the Registry;2). Cell culture, isolation of nucleic acids, and distribution of samples;and 3). Enhancement of the Registry database.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD022657-23
Application #
7840365
Study Section
Pediatrics Subcommittee (CHHD)
Project Start
Project End
Budget Start
2009-05-01
Budget End
2010-04-30
Support Year
23
Fiscal Year
2009
Total Cost
$402,681
Indirect Cost
Name
Cedars-Sinai Medical Center
Department
Type
DUNS #
075307785
City
Los Angeles
State
CA
Country
United States
Zip Code
90048
Joeng, Kyu Sang; Lee, Yi-Chien; Lim, Joohyun et al. (2017) Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest 127:2678-2688
Madan, Simran; Liu, Wei; Lu, James T et al. (2017) A non-mosaic PORCN mutation in a male with severe congenital anomalies overlapping focal dermal hypoplasia. Mol Genet Metab Rep 12:57-61
Rajagopal, Abbhirami; Homan, Erica P; Joeng, Kyu Sang et al. (2016) Restoration of the serum level of SERPINF1 does not correct the bone phenotype in Serpinf1 null mice. Mol Genet Metab 117:378-82
Xue, Yuan; Schoser, Benedikt; Rao, Aliz R et al. (2016) Exome Sequencing Identified a Splice Site Mutation in FHL1 that Causes Uruguay Syndrome, an X-Linked Disorder With Skeletal Muscle Hypertrophy and Premature Cardiac Death. Circ Cardiovasc Genet 9:130-5
Lietman, Caressa D; Marom, Ronit; Munivez, Elda et al. (2015) A transgenic mouse model of OI type V supports a neomorphic mechanism of the IFITM5 mutation. J Bone Miner Res 30:489-98
Hudson, David M; Joeng, Kyu Sang; Werther, Rachel et al. (2015) Post-translationally abnormal collagens of prolyl 3-hydroxylase-2 null mice offer a pathobiological mechanism for the high myopia linked to human LEPREL1 mutations. J Biol Chem 290:8613-22
Chen, Shan; Grover, Monica; Sibai, Tarek et al. (2015) Losartan increases bone mass and accelerates chondrocyte hypertrophy in developing skeleton. Mol Genet Metab 115:53-60
Ezgu, F; Krejci, P; Li, S et al. (2014) Phenotype-genotype correlations in patients with Marinesco-Sjögren syndrome. Clin Genet 86:74-84
Grafe, Ingo; Yang, Tao; Alexander, Stefanie et al. (2014) Excessive transforming growth factor-? signaling is a common mechanism in osteogenesis imperfecta. Nat Med 20:670-5
Homan, Erica P; Lietman, Caressa; Grafe, Ingo et al. (2014) Differential effects of collagen prolyl 3-hydroxylation on skeletal tissues. PLoS Genet 10:e1004121

Showing the most recent 10 out of 365 publications