The ultimate goal of this component is to establish the genetic architecture of Williams syndrome and to use this to dissect genetic contributions to the neural systems underlying human cognition and social behavior. The overarching premise is that humans with cognition and well-defined genetic anomalies provide incisive models for understanding uniquely human social behavior. In the past grant period, we generated the genetic toolkit and defined the common deletion and rare variants with high resolution genomic arrays. We used these tools to associate a single gene, GTF2I, with altered social behavior, two genes with visual spatial function and neuroanatomy, and a small set of genes with mild cognitive deficits. We used quantitative transcriptional analysis to reveal parent-of-origin effects, to show the synaptic protein STX1A is related to WS cognition and to suggest gene networks perturbed. We established a new approach to link WS genes to primate brain systems, colocalizing GTF2IRD1 in hypothalamic neurons, leading to our hypothesis that oxytocin-vasopressin dysregulation underlies WS social behavior. In the next grant period, we will employ a high resolution approach in the WS region and genomewide, and use genetic hypotheses to dissect cognitive, social and neural imaging data, to elucidate the role of WS genes and modifiers in establishing and maintaining the neural systems for WS.
In Aim 1 we will determine the genomic structure of the PPG WS cohort and identify new atypical deletions.
In Aim 2 we will determine the role of WS region DNA sequence in social-emotional phenotypes and the role of genes related to social behavior as modifiers of WS phenotypes.
In Aim 3 we will determine the role of transcript levels of WS and non-WS genes to WS social-emotional phenotypes.
In Aim 4 we will determine the transcriptional networks perturbed in WS using cell line and neuron models. Elucidating the links between genes, emotion and social behavior in WS may provide fundamental insight into the genetic mechanisms and neural circuits for human behavior.

Public Health Relevance

Understanding human social behavior and emotion is one of the greatest challenges for modern biomedicine. Mental dysfunction affects the lives of many millions of Americans and there is a pressing need to develop new ways to treat it. The results of our study will provide unprecedented integration of the genetic and brain processes responsible for human behavior and keys to novel treatments

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD033113-18
Application #
8775238
Study Section
Special Emphasis Panel (ZHD1-MRG-C)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
18
Fiscal Year
2014
Total Cost
$83,985
Indirect Cost
$20,209
Name
University of Utah
Department
Type
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Chailangkarn, Thanathom; Noree, Chalongrat; Muotri, Alysson R (2018) The contribution of GTF2I haploinsufficiency to Williams syndrome. Mol Cell Probes 40:45-51
Ng, Rowena; Lai, Philip; Brown, Timothy T et al. (2018) Neuroanatomical correlates of emotion-processing in children with unilateral brain lesion: A preliminary study of limbic system organization. Soc Neurosci 13:688-700
Griesi-Oliveira, Karina; Suzuki, Angela May; Muotri, Alysson Renato (2017) TRPC Channels and Mental Disorders. Adv Exp Med Biol 976:137-148
Herai, Roberto H; Negraes, Priscilla D; Muotri, Alysson R (2017) Evidence of nuclei-encoded spliceosome mediating splicing of mitochondrial RNA. Hum Mol Genet 26:2472-2479
Ng, Rowena; Brown, Timothy T; Järvinen, Anna M et al. (2016) Structural integrity of the limbic-prefrontal connection: Neuropathological correlates of anxiety in Williams syndrome. Soc Neurosci 11:187-92
Ng, Rowena; Brown, Timothy T; Erhart, Matthew et al. (2016) Morphological differences in the mirror neuron system in Williams syndrome. Soc Neurosci 11:277-88
Green, Tamar; Fierro, Kyle C; Raman, Mira M et al. (2016) Surface-based morphometry reveals distinct cortical thickness and surface area profiles in Williams syndrome. Am J Med Genet B Neuropsychiatr Genet 171B:402-13
Järvinen, Anna; Ng, Rowena; Crivelli, Davide et al. (2015) Relations between social-perceptual ability in multi- and unisensory contexts, autonomic reactivity, and social functioning in individuals with Williams syndrome. Neuropsychologia 73:127-40
Järvinen, Anna; Ng, Rowena; Bellugi, Ursula (2015) Autonomic response to approachability characteristics, approach behavior, and social functioning in Williams syndrome. Neuropsychologia 78:159-70
Ng, Rowena; Fishman, Inna; Bellugi, Ursula (2015) Frontal asymmetry index in Williams syndrome: Evidence for altered emotional brain circuitry? Soc Neurosci 10:366-75

Showing the most recent 10 out of 92 publications