Multiple abnormalities have been identified by our group in the serotonergic system in the medulla of SIDScases. These data are exciting and compelling in light of a large body of experimental data from our groupand others that indicate that serotonin (5-HT) neurons are involved in maintaining cardiovascular andrespiratory homeostasis and in regulating sleep and arousal. There is strong evidence in particular that 5-HTneurons contribute to the ventilatory and arousal response to hypercapnia, as well as the response to temperaturechallenges. Thus, a defect in 5-HT neurons fits well with long-standing theories of SIDS proposingthat there are defects in cardiorespiratory control, arousal and thermoregulation. Preliminary data from ourgroup also indicate that there are defects in the GABA system in SIDS cases. This is intriguing, becausethere is a subset of GABA neurons within the raphe nuclei that may also be central chemoreceptors.The work proposed in this project will use in vitro approaches to address cellular and network mechanismsinvolved in 5-HT and GABA function. We will use state-of-the art in vitro electrophysiological methods toexamine the effects of CO2/pH, O2, temperature, gender and nicotine on 5-HT and GABA neurons duringdevelopment in medullary slices from genetically engineered mice in which all or subsets of serotonin orGABA neurons are fluorescent. With the Neuroanatomy Core, we will also use immunohistochemistry andtract tracing to define the neurochemical organization and connectivity of the medullary 5-HT system relativeto the GABA system and the respiratory network. The goal is to use an in vitro approach to provide insightinto how a defect in 5-HT and GABA neurons impairs the response of an infant to hypercarbia, hypoxiaand/or a temperature challenge, why this defect is expressed only during a critical developmental period,how gender and prenatal exposure to nicotine modifies it, and why death typically occurs during sleep.To accomplish this, we propose the following aims: 1) Define the properties of GABA neurons in themedullary raphe. 2) Characterize how hypoxia, temperature, prenatal nicotine, gender and pH interact toaffect different subsets of 5-HT neurons in the medulla at different postnatal ages. 3) Define how networkinteractions between the raphe, ventrolateral medulla, retrotrapezoid nucleus and pre-B6tzinger Complexinfluence the response to pH and neuromodulators. The cellular and network experiments proposed hereare interdigitated with those in the other Projects of this PPG, and are an intermediate step between themolecular approach of Project 5 and the human and whole animal work of Projects 1-3. Together our resultswill provide critical insight, we believe, into how a defect in the 5 HT system could lead to SIDS.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
2P01HD036379-11
Application #
7513329
Study Section
Special Emphasis Panel (ZHD1-MCHG-B (HK))
Project Start
Project End
Budget Start
2008-04-21
Budget End
2009-03-31
Support Year
11
Fiscal Year
2008
Total Cost
$305,041
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Dosumu-Johnson, Ryan T; Cocoran, Andrea E; Chang, YoonJeung et al. (2018) Acute perturbation of Pet1-neuron activity in neonatal mice impairs cardiorespiratory homeostatic recovery. Elife 7:
Babb, Jessica A; Linnros, Sofia E; Commons, Kathryn G (2018) Evidence for intact 5-HT1A receptor-mediated feedback inhibition following sustained antidepressant treatment in a rat model of depression. Neuropharmacology 141:139-147
Darnall, Robert A; Chen, Xi; Nemani, Krishnamurthy V et al. (2017) Early postnatal exposure to intermittent hypoxia in rodents is proinflammatory, impairs white matter integrity, and alters brain metabolism. Pediatr Res 82:164-172
Tenpenny, Richard C; Commons, Kathryn G (2017) What Gene Mutations Affect Serotonin in Mice? ACS Chem Neurosci 8:987-995
Cerpa, Veronica J; Wu, Yuanming; Bravo, Eduardo et al. (2017) Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development. Neuroscience 344:1-14
Ehlinger, Daniel G; Commons, Kathryn G (2017) Altered Cav1.2 function in the Timothy syndrome mouse model produces ascending serotonergic abnormalities. Eur J Neurosci 46:2416-2425
Panzini, Chris M; Ehlinger, Daniel G; Alchahin, Adele M et al. (2017) 16p11.2 deletion syndrome mice perseverate with active coping response to acute stress - rescue by blocking 5-HT2A receptors. J Neurochem 143:708-721
Commons, Kathryn G; Cholanians, Aram B; Babb, Jessica A et al. (2017) The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-like Behavior. ACS Chem Neurosci 8:955-960
Haynes, Robin L; Frelinger 3rd, Andrew L; Giles, Emma K et al. (2017) High serum serotonin in sudden infant death syndrome. Proc Natl Acad Sci U S A 114:7695-7700
Guo, Yue-Ping; Commons, Kathryn G (2017) Serotonin neuron abnormalities in the BTBR mouse model of autism. Autism Res 10:66-77

Showing the most recent 10 out of 143 publications