Uterine leiomyomata (fibroids) represent the most prevalent benign gynecologic disorder in the US. The cellular and molecular mechanisms regulating the development and growth of leiomyoma are not well understood. Our multidisciplinary team has designed 3 well-integrated projects focusing on Interactions between biologically critical hormonal pathways in uterine leiomyoma involving the transcription factors progesterone receptor (PR) and FOXO, the signaling pathway PI3K/AKT and the pro-fibrotic factor TGF-beta. Project I (Bulun) will be pursued to understand the mechanisms as to how antl-progestins such as RU486 reduce tumor size. We hypothesize that progesterone regulates a number of critical genes, that favors increased proliferation and decreased apoptosis of leiomyoma smooth muscle cells, whereas anti-progestins reverse this effect by enhancing apoptosis and decreasing proliferation. Project II (Kim/Chakravarti) will determine the role of the PI3K/AKT/F0X0 signaling pathway regulating leiomyoma cell growth and survival in response to progesterone. We hypothesize that progesterone Induces proliferation of leiomyoma cells through activation of the PI3K/AKT/F0X0 signaling pathway and that Inhibitors of the AKT pathway should override the proliferative effects of progesterone and promote apoptosis. Project III (Nowak) will define the mechanisms as to how antifibrotic drugs regulate leiomyoma growth. We hypothesize that the increased proliferation exhibited by leiomyoma smooth muscle cells Is due to a major shift in the extracellular matrix environment caused by increased synthesis of new, monomeric collagen type I by these cells. We will determine whether antifibrotic drugs may be an effective new treatment for leiomyomas. These projects are supported by an Administrative Core (Bulun) and Tissue Procurement and Cell Culture Core (Kurita). Overall, as part of our long range goal, all projects investigate local hormonal signaling regulating apoptosis and proliferation as biologic endpoints and test existing and upcoming pharmaceutical compounds that target these pathways in uterine leiomyomata.

Public Health Relevance

Symptomatic uterine leiomyomata affect millions of US women and cause irregular uterine bleeding, anemia, recurrent pregnancy loss leading to more than 200,000 hysterectomies per year. Available treatments are limited due in large part to the fact that the mechanisms regulating the development and growth of these tumors are unclear. We propose integrated molecular, cellular and translational studies that should lead to a better understanding and future development of novel therapeutics for uterine leiomyomata.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD057877-02
Application #
7912893
Study Section
Special Emphasis Panel (ZHD1-DSR-K (BS))
Program Officer
Parrott, Estella C
Project Start
2009-08-15
Project End
2014-06-30
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
2
Fiscal Year
2010
Total Cost
$1,198,246
Indirect Cost
Name
Northwestern University at Chicago
Department
Obstetrics & Gynecology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Xu, Xiuhua; Kim, J Julie; Li, Yinuo et al. (2018) Oxidative stress-induced miRNAs modulate AKT signaling and promote cellular senescence in uterine leiomyoma. J Mol Med (Berl) 96:1095-1106
Zhang, Qing; Kanis, Margaux Jenna; Ubago, Julianne et al. (2018) The selected biomarker analysis in 5 types of uterine smooth muscle tumors. Hum Pathol 76:17-27
Zhang, Qing; Poropatich, Kate; Ubago, Julianne et al. (2018) Fumarate Hydratase Mutations and Alterations in Leiomyoma With Bizarre Nuclei. Int J Gynecol Pathol 37:421-430
Ikhena, Deborah E; Liu, Shimeng; Kujawa, Stacy et al. (2018) RANKL/RANK Pathway and Its Inhibitor RANK-Fc in Uterine Leiomyoma Growth. J Clin Endocrinol Metab 103:1842-1849
Ikhena, Deborah E; Bulun, Serdar E (2018) Literature Review on the Role of Uterine Fibroids in Endometrial Function. Reprod Sci 25:635-643
Vidimar, Vania; Chakravarti, Debabrata; Bulun, Serdar E et al. (2018) The AKT/BCL-2 Axis Mediates Survival of Uterine Leiomyoma in a Novel 3D Spheroid Model. Endocrinology 159:1453-1462
Xie, Jia; Xu, Xiuhua; Yin, Ping et al. (2018) Application of ex-vivo spheroid model system for the analysis of senescence and senolytic phenotypes in uterine leiomyoma. Lab Invest 98:1575-1587
Xie, Jia; Ubango, Julianne; Ban, Yanli et al. (2018) Comparative analysis of AKT and the related biomarkers in uterine leiomyomas with MED12, HMGA2, and FH mutations. Genes Chromosomes Cancer 57:485-494
Park, Min Ju; Shen, Hailian; Spaeth, Jason M et al. (2018) Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19. J Biol Chem 293:4870-4882
Liu, Shimeng; Yin, Ping; Kujawa, Stacy A et al. (2018) Progesterone receptor integrates the effects of mutated MED12 and altered DNA methylation to stimulate RANKL expression and stem cell proliferation in uterine leiomyoma. Oncogene :

Showing the most recent 10 out of 54 publications