Mitochondrial Encephalomyopathies: Approaches to Treatment. Mitochondrial encephalomyopathies are a heavy public health burden and therapy is woefully inadequate. We are proposing therapy-directed studies for disorders associated with mitochondrial DNA (mtDNA) point mutations, especially mitochondrial encephalomyopathy, lactic acidosis, and stroke like episodes (MELAS-3243), and for mendelian disorders, including the mtDNA depletion due to TK2 deficiency and coenzyme Q10 (CoQ10) deficiencies. In Project # I, Dr. Darryl De Vivo, P.I. will continue to characterize the natural history of MELAS, correlating clinical course in probands and carriers with cerebral and muscle biomarkers assessed by MRSI and 31P- NMR. He will seek new biomarkers by applying metabolomics (collaboration with Dr. Vamsi Mootha, Harvard University and MIT, Boston, MA). Project #2 (Dr. Eric A. Schon, P.I.) will concentrate on pharmacological approaches to mtDNA-related disorders by evaluating the effectiveness of compounds affecting heteroplasmic shifting or functional rescuing through modulation of mitophagy and quality control. Project # 3 (Dr. Michio Hirano, P.I.) will use pharmacological and gene therapy of thymidine kinase 2 (TK2) deficiency in mice that faithfully recapitulate the human disease. A molecular bypass therapy is showing promising preliminary results, with amelioration of the abnormal phenotype and extension of the lifespan not only in mice but also in a few human subjects. In TK2 knock-in mice he also plans to test gene therapy using adeno- associated virus (AAV) vectors to deliver human TK2 and restore enzymatic activity. In Project # 4 (Dr. Catarina Quinzii, PI), Dr. Quinzii will test genetic and pharmacologic therapies for CoQ10 deficiency in vitro through ADCK3 overexpression and exposure to analogs of 4-hydroxybenzoic acid, a precursor required for CoQ10 biosynthesis. She also proposes to compare efficacies of oral and intrathecal administration of CoQ10 and idebenone in preventing or delaying the molecular and biochemical abnormalities, and the clinical onset of the disease in the Pdss2kd/kd and in the newly available Coq9X/X mutant mice Core Unit A (the Administrative Core) (Dr. Salvatore DiMauro, Director; Dr.Michio Hirano, Co-Director) will provide direction, administration, and external consultation. Core Unit B (the Technical Core) (Dr. Ali Naini, Director) will provide technical service (tissue culture), diagnostc tools (histochemistry, biochemistry, molecular genetics), and manage shared equipment for the project as a whole.

Public Health Relevance

Mitochondrial Encephalomyopathies: Approaches to Treatment. Mitochondrial encephalomyopathies are a heavy public health burden and therapy is woefully inadequate. We are proposing therapy-directed studies for disorders associated with mitochondrial DNA (mtDNA) point mutations, especially mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS-3243), and for Mendelian disorders, including the mtDNA depletion due to TK2 deficiency and coenzyme Q10 (CoQ10) deficiencies.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD080642-03
Application #
9121387
Study Section
Pediatrics Subcommittee (CHHD-A)
Program Officer
Parisi, Melissa
Project Start
2014-09-30
Project End
2019-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
3
Fiscal Year
2016
Total Cost
$1,544,137
Indirect Cost
$511,136
Name
Columbia University (N.Y.)
Department
Neurology
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Wang, Dan; Li, Jia; Song, Chun-Qing et al. (2018) Cas9-mediated allelic exchange repairs compound heterozygous recessive mutations in mice. Nat Biotechnol 36:839-842
Hirano, Michio; Emmanuele, Valentina; Quinzii, Catarina M (2018) Emerging therapies for mitochondrial diseases. Essays Biochem 62:467-481
Raghavan, Neha S; Brickman, Adam M; Andrews, Howard et al. (2018) Whole-exome sequencing in 20,197 persons for rare variants in Alzheimer's disease. Ann Clin Transl Neurol 5:832-842
Barca, Emanuele; Ganetzky, Rebecca D; Potluri, Prasanth et al. (2018) USMG5 Ashkenazi Jewish founder mutation impairs mitochondrial complex V dimerization and ATP synthesis. Hum Mol Genet 27:3305-3312
Garone, Caterina; Taylor, Robert W; Nascimento, Andrés et al. (2018) Retrospective natural history of thymidine kinase 2 deficiency. J Med Genet 55:515-521
Kleiner, Giulio; Barca, Emanuele; Ziosi, Marcello et al. (2018) CoQ10 supplementation rescues nephrotic syndrome through normalization of H2S oxidation pathway. Biochim Biophys Acta Mol Basis Dis 1864:3708-3722
Siegmund, Stephanie E; Grassucci, Robert; Carter, Stephen D et al. (2018) Three-Dimensional Analysis of Mitochondrial Crista Ultrastructure in a Patient with Leigh Syndrome by In Situ Cryoelectron Tomography. iScience 6:83-91
Winawer, Melodie R; Griffin, Nicole G; Samanamud, Jorge et al. (2018) Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 83:1133-1146
Pera, Marta; Larrea, Delfina; Guardia-Laguarta, Cristina et al. (2017) Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease. EMBO J 36:3356-3371
Quinzii, Catarina M; Luna-Sanchez, Marta; Ziosi, Marcello et al. (2017) The Role of Sulfide Oxidation Impairment in the Pathogenesis of Primary CoQ Deficiency. Front Physiol 8:525

Showing the most recent 10 out of 51 publications