The long term goal of this project to produce a battery of polymorphic markers for chromosome 3 which will serve as a framework for mapping and sequencing the chromosome. Currently, the chromosome 3 maps is sparse and only a handful of gene have been mapped to this large chromosome. Approximately 250 markers will be isolated for each chromosome and placed on radiation hybrid and linkage maps. The net result of this project will be a 2 cM map and physical markers approximately every megabase. The markers to be developed will be highly useful as they are highly polymorphic and PCR based. The first specific aim of the project is to produce highly polymorphic markers base on simple repeats. Repeats of 2, 3, and 4 base pairs will be isolated from chromosome specific libraries, and their sequence used to develop a PCR based assay.
A second aim i s to develop polymorphisms within known gene loci mapped to chromosome 3. The method of single strand conformational polymorphism (SSCP) and sequencing will identify polymorphism which will be detected in individuals by an allele specific oligonucleotide. Further markers will be developed in specific aim three for those regions of the chromosomes which lack markers. ALU PCR will be used on radiation reduced hybrids to generate region specific clones. These clones will be sequenced and analyzed for polymorphism. All the above mentioned markers will be placed on the physical map by radiation hybrids and the genetic map by analyzing CEPH and other family DNA. Because this project will generate PCR based polymorphisms, the markers will be immediately useful to the scientific community. Investigators seeking linkage markers will have a large reservoir of precisely mapped markers to draw upon. Our approach assimilates all the known data on chromosome 3 by incorporating known sequences into detailed physical and genetic maps. These markers are a first step towards a directed aligning of YAC and cosmid clones and will facilitate closure on this chromosome in the future.
Showing the most recent 10 out of 30 publications