In the last three years there has been considerable progress in understanding the nature and pattern of single nucleotide variation within the human species. By contrast, a comprehensive understanding of human structural variation which includes deletion, insertion and inversion polymorphisms lags far behind. The structure, frequency and phenotypic impact of most of these events are not known. Recent studies, however, suggest that genome structural variation is common in the normal population, alters structure and copy number of genes and is associated with human disease/disease susceptibility factors. This program project develops a systematic approach to characterize common structural variation within the human genome.
The specific aims of this proposal are 1) to identify all inversions, deletions and insertions (> 6 kb in size) in nine human samples using an end-sequence-pair mapping strategy; 2) to sequence the structure of each of these (n=~2000 variants) including breakpoints; and 3) to develop genotyping assays to assess their frequency in the human population. It is a collaborative effort which brings together expertise in genome sequencing, clone characterization and structural variation. The results of this work will generate the first high quality reference set of sequenced structural variants, provide insight into the molecular mechanisms underlying these events, and develop the genotyping platforms that will be needed to assess the phenotypic consequences in terms of human disease and adaptation. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Research Program Projects (P01)
Project #
5P01HG004120-02
Application #
7451080
Study Section
Ethical, Legal, Social Implications Review Committee (GNOM)
Program Officer
Brooks, Lisa
Project Start
2007-06-21
Project End
2010-03-31
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
2
Fiscal Year
2008
Total Cost
$1,028,976
Indirect Cost
Name
University of Washington
Department
Genetics
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Eslami Rasekh, Marzieh; Chiatante, Giorgia; Miroballo, Mattia et al. (2017) Discovery of large genomic inversions using long range information. BMC Genomics 18:65
Watson, Corey T; Steinberg, Karyn Meltz; Graves, Tina A et al. (2015) Sequencing of the human IG light chain loci from a hydatidiform mole BAC library reveals locus-specific signatures of genetic diversity. Genes Immun 16:24-34
Nuttle, Xander; Itsara, Andy; Shendure, Jay et al. (2014) Resolving genomic disorder-associated breakpoints within segmental DNA duplications using massively parallel sequencing. Nat Protoc 9:1496-513
Lazaridis, Iosif; Patterson, Nick; Mittnik, Alissa et al. (2014) Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513:409-13
Huddleston, John; Ranade, Swati; Malig, Maika et al. (2014) Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res 24:688-96
Stong, Nicholas; Deng, Zhong; Gupta, Ravi et al. (2014) Subtelomeric CTCF and cohesin binding site organization using improved subtelomere assemblies and a novel annotation pipeline. Genome Res 24:1039-50
Antonacci, Francesca; Dennis, Megan Y; Huddleston, John et al. (2014) Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability. Nat Genet 46:1293-302
Steinberg, Karyn Meltz; Schneider, Valerie A; Graves-Lindsay, Tina A et al. (2014) Single haplotype assembly of the human genome from a hydatidiform mole. Genome Res 24:2066-76
Mueller, Michael; Barros, Paula; Witherden, Abigail S et al. (2013) Genomic pathology of SLE-associated copy-number variation at the FCGR2C/FCGR3B/FCGR2B locus. Am J Hum Genet 92:28-40
Nuttle, Xander; Huddleston, John; O'Roak, Brian J et al. (2013) Rapid and accurate large-scale genotyping of duplicated genes and discovery of interlocus gene conversions. Nat Methods 10:903-9

Showing the most recent 10 out of 41 publications