For decades, studies ofbaroreceptor activity have depended on measurements of action potentials in single fibers or whole nerve. We had no insight into the molecular components of the mechanoelectrical transducers that initiate depolarization and trigger action potentials. In fact, transduction of mechanical stimuli is one of the least understood of the vertebrate senses. Our goal has been to define the molecular basis for mechanical activation of arterial and cardiac sensory afferents. In earlier studies we defined the characteristics of aortic baroreceptor neurons (BRNs) in culture. These channels are cation-selective, non voltage-gated, and blocked by amiloride or gadolinium. However, their molecular identity remains unknown. A candidate family of evolutionary-conserved ion channels, the degenerin/epithelial Na+-channels (DEG/ENaC), was discovered in a genetic screen for mechanosensitive genes in C. elegans. During the past 4 years we made important discoveries to advance our hypothesis that DEG/ENaC channels function as the mechanoelectrical transducer in mammalian meehanoreceptors: 1) DEG/ENaC subunits are expressed in mechanoreceptive neurons and in their sensory terminals. 2) The functions of BRNs, both in vivo and in vitro are reduced by inhibitors of DEG/ENaC channels. 3) Most important, targeted disruption of a DEG/ENaC subunit in mice reduced mechanosensation in aortic BRNs and in cutaneous mechanoreceptors but did not abolish it. We believe the mammalian mechanosensitive channels may be a heteromultimeric complex of multiple DEG/ENaC proteins, along with associated intra and extracellular """"""""tethering"""""""" proteins. Thus, our first hypothesis is aimed at defining the subunits of the DEG/ENaC family and associated proteins that form the mechanosensitive complex in BRNs. Additionally, we have evidence that DEG/ENaC channels also play an important role in cardiac sensory neurons, not only as mechanosensors, but also as H+-sensors in the setting of myocardial ischemia. Thus, these channels could be the mediators of activation of cardiac sympathetic afferents, causing the pronounced reflex increase in sympathetic outflow in heart failure states. Therefore, our second hypothesis is aimed at defining the proton- and mechano-sensitive DEG/ENaC channels of cardiac sensory afferents in dorsal root ganglia (sympathetic afferents) and nodose ganglia (vagal afferents) and determining their function under normal physiological and in myocardial ischemia and heart failure.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL014388-31
Application #
6704847
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2003-01-21
Project End
2007-12-31
Budget Start
2003-01-21
Budget End
2003-12-31
Support Year
31
Fiscal Year
2003
Total Cost
$282,412
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Johnson, Casey P; Christensen, Gary E; Fiedorowicz, Jess G et al. (2018) Alterations of the cerebellum and basal ganglia in bipolar disorder mood states detected by quantitative T1? mapping. Bipolar Disord 20:381-390
Hardy, Rachel N; Simsek, Zinar D; Curry, Brandon et al. (2018) Aging affects isoproterenol-induced water drinking, astrocyte density, and central neuronal activation in female Brown Norway rats. Physiol Behav 192:90-97
Lane-Cordova, Abbi D; Kalil, Graziela Z; Wagner, Christopher J et al. (2018) Hemoglobin A1c and C-reactive protein are independently associated with blunted nocturnal blood pressure dipping in obesity-related prediabetes. Hypertens Res 41:33-38
Larson, Robert A; Chapleau, Mark W (2018) Increased cardiac sympathetic activity: Cause or compensation in vasovagal syncope? Clin Auton Res 28:265-266
Tong, Brian; Abosi, Oluchi; Schmitz, Samantha et al. (2018) Bipolar disorder and related mood states are not associated with endothelial function of small arteries in adults without heart disease. Gen Hosp Psychiatry 51:36-40
Zeng, Wei-Zheng; Marshall, Kara L; Min, Soohong et al. (2018) PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362:464-467
DuBose, Lyndsey E; Boles Ponto, Laura L; Moser, David J et al. (2018) Higher Aortic Stiffness Is Associated With Lower Global Cerebrovascular Reserve Among Older Humans. Hypertension 72:476-482
Holwerda, Seth W; Luehrs, Rachel E; Gremaud, Allene L et al. (2018) Relative burst amplitude of muscle sympathetic nerve activity is an indicator of altered sympathetic outflow in chronic anxiety. J Neurophysiol 120:11-22
Sabharwal, Rasna; Mason, Bianca N; Kuburas, Adisa et al. (2018) Increased receptor activity-modifying protein 1 in the nervous system is sufficient to protect against autonomic dysregulation and hypertension. J Cereb Blood Flow Metab :271678X17751352
Harwani, Sailesh C (2018) Macrophages under pressure: the role of macrophage polarization in hypertension. Transl Res 191:45-63

Showing the most recent 10 out of 175 publications