The nucleus of the solitary tract (NTS) is the brain region most implicated in chemoreflex-induced blood pressure elevation and hypertension-evoked resetting of baroreceptor reflexes, both of which can be modulated through activation of local angiotensin-1 (AT1) receptors. Project 2 will test the central hypothesis that AT1 receptors in the NTS have subcellular distributions supporting direct involvement in cherno- and/or barosensory reflexes and interactions with both catecholamines and NAD(P)H oxidase, an enzyme implicated in the acute and long-term effects of angiotensin II (Angll). This will be achieved by using (1) high resolution electron microscopic immunocytochemical dual labeling of the relevant receptors and NAD(P)H oxidase subunits, and (2) both ultrastructural analysis and patch-clamp recording in barosensory neurons identified by anterograde transport of DiA in rat NTS. There are 5 Specific Aims.
Aims 1 and 2 will test the hypothesis that AT1 and alpha2-adrenergic receptors are co-localized within presynaptic axons or their dendritic targets in the NTS, where their distributions are consistent with opposing actions of their agonists on chemo- or barosensory neurons.
Aim 3 will test the hypothesis that the physiological actions of Ang II in NTS barosensory neurons are mediated through opening of voltage-dependent Ca 2+ channels also affected by reactive oxygen species (ROS) generated by NAD(P)H oxidase, whose subunits are present in many of the cells that contain AT1 receptors. The opening of voltage-gated Ca 2+ channels is essential for activation of NMDA and certain types of AMPA receptors that are the major mediators of chemosensory and barosensory transmission, respectively. These receptors, like NAD(P)H oxidase, are composed of multiple subunits showing activity-dependent mobilization to plasma and cytoplasmic membranes. Changes in the subcellular distribution of immunogold labeling for glutamate (Aim 4) or NAD(P)H oxidase (Aim 5) subunits will be used to study the potential role of this plasticity in the blood pressure elevations produced either by chronic intermittent hypoxia in the rat model of sleep apnea, or Angll-induced hypertension. Together, the results will contribute to understanding the brain mechanisms underlying the development and maintenance of hypertension.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL018974-27
Application #
7088874
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2005-07-01
Project End
2009-06-30
Budget Start
2005-07-01
Budget End
2006-06-30
Support Year
27
Fiscal Year
2005
Total Cost
$329,868
Indirect Cost
Name
Weill Medical College of Cornell University
Department
Type
DUNS #
060217502
City
New York
State
NY
Country
United States
Zip Code
10065
Glass, Michael J; Chan, June; Pickel, Virginia M (2017) Ultrastructural characterization of tumor necrosis factor alpha receptor type 1 distribution in the hypothalamic paraventricular nucleus of the mouse. Neuroscience 352:262-272
Takahashi, Reisuke H; Capetillo-Zarate, Estibaliz; Lin, Michael T et al. (2013) Accumulation of intraneuronal ýý-amyloid 42 peptides is associated with early changes in microtubule-associated protein 2 in neurites and synapses. PLoS One 8:e51965
Misono, K; Lessard, A (2012) Apomorphine-evoked redistribution of neurokinin-3 receptors in dopaminergic dendrites and neuronal nuclei of the rat ventral tegmental area. Neuroscience 203:27-38
Van Kempen, Tracey A; Milner, Teresa A; Waters, Elizabeth M (2011) Accelerated ovarian failure: a novel, chemically induced animal model of menopause. Brain Res 1379:176-87
Williams, Tanya J; Akama, Keith T; Knudsen, Margarete G et al. (2011) Ovarian hormones influence corticotropin releasing factor receptor colocalization with delta opioid receptors in CA1 pyramidal cell dendrites. Exp Neurol 230:186-96
Williams, T J; Milner, T A (2011) Delta opioid receptors colocalize with corticotropin releasing factor in hippocampal interneurons. Neuroscience 179:9-22
Williams, Tanya J; Torres-Reveron, Annelyn; Chapleau, Jeanette D et al. (2011) Hormonal regulation of delta opioid receptor immunoreactivity in interneurons and pyramidal cells in the rat hippocampus. Neurobiol Learn Mem 95:206-20
Spencer-Segal, Joanna L; Waters, Elizabeth M; Bath, Kevin G et al. (2011) Distribution of phosphorylated TrkB receptor in the mouse hippocampal formation depends on sex and estrous cycle stage. J Neurosci 31:6780-90
Williams, Tanya J; Mitterling, Katherine L; Thompson, Louisa I et al. (2011) Age- and hormone-regulation of opioid peptides and synaptic proteins in the rat dorsal hippocampal formation. Brain Res 1379:71-85
Takahashi, Reisuke H; Capetillo-Zarate, Estibaliz; Lin, Michael T et al. (2010) Co-occurrence of Alzheimer's disease ß-amyloid and ? pathologies at synapses. Neurobiol Aging 31:1145-52

Showing the most recent 10 out of 294 publications