The aims of this study are: 1) to identify patients at highest risk of sudden death from ventricular arrhythmia following an acute myocardial infarction, and 2) to reduce the incidence of this complication in those patients identified to be at highest risk. The study population will consist of approximately 425 survivors of myocardial infarction who have one or more conventional risk factors for subsequent sudden cardiac death. These patients will receive electrophysiologic study (EPS) with programmed ventricular stimulation; Up to 3 ventricular extrastimuli will be administered in an attempt to induce ventricular tachycardia (VT). Those patients without inducible VT will be teated with a beta adrenergic blocking agent only. Of the patients with inducible VT at EPS, one group will receive beta blockade therapy only, while another group will receive EPS-guided antiarrhythmic therapy in additional to beta blockade. These three groups will be followed long-term to determine whether the results of EPS predict subsequent sudden cardiac death more accurately than current techniques, and whether prophylactic therapy guided by EPS can prevent sudden cardiac death in susceptible patients.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL027430-14
Application #
5213363
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
14
Fiscal Year
1996
Total Cost
Indirect Cost
Cole, R T; Lucas, C L; Cascio, W E et al. (2005) A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system. Ann Biomed Eng 33:1555-73
Cascio, Wayne E; Yang, Hua; Muller-Borer, Barbara J et al. (2005) Ischemia-induced arrhythmia: the role of connexins, gap junctions, and attendant changes in impulse propagation. J Electrocardiol 38:55-9
Xu, Le; Meissner, Gerhard (2004) Mechanism of calmodulin inhibition of cardiac sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor). Biophys J 86:797-804
Kim, Chang-Soo; Ufer, Stefan; Seagle, Christopher M et al. (2004) Use of micromachined probes for the recording of cardiac electrograms in isolated heart tissues. Biosens Bioelectron 19:1109-16
Graff, Ronald D; Kelley, Scott S; Lee, Greta M (2003) Role of pericellular matrix in development of a mechanically functional neocartilage. Biotechnol Bioeng 82:457-64
Stange, Mirko; Xu, Le; Balshaw, David et al. (2003) Characterization of recombinant skeletal muscle (Ser-2843) and cardiac muscle (Ser-2809) ryanodine receptor phosphorylation mutants. J Biol Chem 278:51693-702
Bidasee, Keshore R; Xu, Le; Meissner, Gerhard et al. (2003) Diketopyridylryanodine has three concentration-dependent effects on the cardiac calcium-release channel/ryanodine receptor. J Biol Chem 278:14237-48
Sun, Junhui; Xu, Le; Eu, Jerry P et al. (2003) Nitric oxide, NOC-12, and S-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms. An allosteric function for O2 in S-nitrosylation of the channel. J Biol Chem 278:8184-9
Yamaguchi, Naohiro; Xu, Le; Pasek, Daniel A et al. (2003) Molecular basis of calmodulin binding to cardiac muscle Ca(2+) release channel (ryanodine receptor). J Biol Chem 278:23480-6
Lemasters, John J; Qian, Ting; He, Lihua et al. (2002) Role of mitochondrial inner membrane permeabilization in necrotic cell death, apoptosis, and autophagy. Antioxid Redox Signal 4:769-81

Showing the most recent 10 out of 115 publications