Our Program Project is focused on the genetic dissection of metabolic syndrome (MetSyn) traits relevant to cardiometabolic disease. We believe that our proposal is unique in its use of multifaceted and integrative approaches to measure and analyze mouse and human populations. During the current grant cycle, each of the four projects has been highly productive and also highly interactive, as described in the Program Introduction. We now propose three Projects and four Cores. The projects represent direct continuations of the present Projects 1, 2, and 4. Project 1 will focus on gene-by-diet interactions in metabolic syndrome traits. Project 2 will utilize systems genetics approaches to understand the regulation of bile acid metabolism and its connection to metabolic syndrome. Project 3 will focus on systems genetics analyses of plasma lipoprotein metabolism in ethnically diverse human populations. Each of the projects will utilize two important resources developed during the present grant cycle. The first of these is the Hybrid Mouse Diversity Panel (HMDP), a renewable population of about 100 inbred strains of mice that can be used for high-resolution association mapping of complex traits and systems genetics. The second is the METSIM population developed by Maarku Laakso, University of Kuopio, Finland. This population consists of more than 10,000 men aged 50-65, that have been characterized in great detail for metabolic syndrome traits as well as for sequence variation and gene expression in adipose. In addition to these resources, we examine two biologic scales that appear to be particularly relevant to MetSyn: the gut microbiome and DNA methylation. Each of the projects will interact significantly with one another and with all of the Cores to address several interrelated critical questions relating to MetSyn: What is the nature of gene-by-diet interactions contributing to MetSyn? How do genetic variations influence bile acid and triglyceride metabolism? How do ethnic differences contribute to MetSyn?

Public Health Relevance

Overall MetSyn traits and obesity have increased dramatically in the US and in many other parts of the world in recent decades. This will likely result in an epidemic of heart disease, diabetes, heart failure, and stroke. Our Program directly addresses this problem by analysis of the genes, pathways, and environmental factors contributing to MetSyn, thereby providing a framework for the development of new therapies and diagnostic approaches.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL028481-35
Application #
9689491
Study Section
Special Emphasis Panel (ZHL1)
Program Officer
Liu, Lijuan
Project Start
1997-04-01
Project End
2021-04-30
Budget Start
2019-05-01
Budget End
2021-04-30
Support Year
35
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of California Los Angeles
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Miao, Zong; Alvarez, Marcus; Pajukanta, Päivi et al. (2018) ASElux: an ultra-fast and accurate allelic reads counter. Bioinformatics 34:1313-1320
Kurt, Zeyneb; Barrere-Cain, Rio; LaGuardia, Jonnby et al. (2018) Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol Sex Differ 9:46
Orozco, Luz D; Farrell, Colin; Hale, Christopher et al. (2018) Epigenome-wide association in adipose tissue from the METSIM cohort. Hum Mol Genet 27:1830-1846
Chella Krishnan, Karthickeyan; Kurt, Zeyneb; Barrere-Cain, Rio et al. (2018) Integration of Multi-omics Data from Mouse Diversity Panel Highlights Mitochondrial Dysfunction in Non-alcoholic Fatty Liver Disease. Cell Syst 6:103-115.e7
Freund, Malika Kumar; Burch, Kathryn S; Shi, Huwenbo et al. (2018) Phenotype-Specific Enrichment of Mendelian Disorder Genes near GWAS Regions across 62 Complex Traits. Am J Hum Genet 103:535-552
Pan, David Z; Garske, Kristina M; Alvarez, Marcus et al. (2018) Integration of human adipocyte chromosomal interactions with adipose gene expression prioritizes obesity-related genes from GWAS. Nat Commun 9:1512
Small, Kerrin S; Todor?evi?, Marijana; Civelek, Mete et al. (2018) Regulatory variants at KLF14 influence type 2 diabetes risk via a female-specific effect on adipocyte size and body composition. Nat Genet 50:572-580
Mangul, Serghei; Yang, Harry Taegyun; Strauli, Nicolas et al. (2018) ROP: dumpster diving in RNA-sequencing to find the source of 1 trillion reads across diverse adult human tissues. Genome Biol 19:36
Cantor, Rita; Navarro, Linda; Pan, Calvin (2018) Identifying fenofibrate responsive CpG sites. BMC Proc 12:43
Rahmani, Elior; Schweiger, Regev; Shenhav, Liat et al. (2018) BayesCCE: a Bayesian framework for estimating cell-type composition from DNA methylation without the need for methylation reference. Genome Biol 19:141

Showing the most recent 10 out of 518 publications