The Gene Transfer Core at the University of Iowa is integrated into multiple gene therapy projects directed at the study of diseases of the lung with particular application to cystic fibrosis. Gene Transfer Core staff are active participants in the development of gene transfer technologies. Interactions between Gene Transfer Core staff and colleagues, Zabner, Welsh, and McCray allows for cross-fertilization of ideas, technical advancements, and innovations in vector design. Additionally the Gene Transfer Core benefits from interactions with investigators in the Cardiovascular, Macular Degeneration and CF Centers. The Gene Transfer facility's overall objective is to support Drs. Zabner, Welsh and McCray in the use of gene transfer technologies. This includes consultation with them, development of novel vectors, collaborative testing of vectors generated for function and purity, and finally routine preparation. The Gene Transfer Core staff and investigators are in close contact through all phases of vector design and generation. Thus, the Core serves as both a research and development facility for gene transfer studies, and a service facility for routine vector preparations. As a part of the service the Gene Transfer Core will provide purified and concentrated preparations of recombinant adenovirus, adeno-associated virus (AAV), and retrovirus (including lentivirus). This facility will also provide access to standard cell lines, expression plasmids, and stocks of recombinant reporter viruses. The main responsibilities of the Core will be: Prepare recombinant vectors; Quality control; Vector Dissemination; Maintain a database of vector stocks available for use; Catalogue plasmid database of expression vectors; develop new expression vectors as needed; Develop novel methods for virus production; Design and develop novel vectors.
Meyerholz, David K; Sieren, Jessica C; Beck, Amanda P et al. (2018) Approaches to Evaluate Lung Inflammation in Translational Research. Vet Pathol 55:42-52 |
Rosen, Bradley H; Evans, T Idil Apak; Moll, Shashanna R et al. (2018) Infection Is Not Required for Mucoinflammatory Lung Disease in CFTR-Knockout Ferrets. Am J Respir Crit Care Med 197:1308-1318 |
Mao, Suifang; Shah, Alok S; Moninger, Thomas O et al. (2018) Motile cilia of human airway epithelia contain hedgehog signaling components that mediate noncanonical hedgehog signaling. Proc Natl Acad Sci U S A 115:1370-1375 |
Montoro, Daniel T; Haber, Adam L; Biton, Moshe et al. (2018) A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560:319-324 |
Lynch, Thomas J; Anderson, Preston J; Rotti, Pavana G et al. (2018) Submucosal Gland Myoepithelial Cells Are Reserve Stem Cells That Can Regenerate Mouse Tracheal Epithelium. Cell Stem Cell 22:653-667.e5 |
Meyerholz, David K; Stoltz, David A; Gansemer, Nick D et al. (2018) Lack of cystic fibrosis transmembrane conductance regulator disrupts fetal airway development in pigs. Lab Invest 98:825-838 |
Gray, Robert D; Hardisty, Gareth; Regan, Kate H et al. (2018) Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis. Thorax 73:134-144 |
Thornell, Ian M; Li, Xiaopeng; Tang, Xiao Xiao et al. (2018) Nominal carbonic anhydrase activity minimizes airway-surface liquid pH changes during breathing. Physiol Rep 6: |
Reznikov, Leah R; Meyerholz, David K; Abou Alaiwa, Mahmoud et al. (2018) The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity. Am J Physiol Lung Cell Mol Physiol 315:L133-L148 |
Meyerholz, David K; Beck, Amanda P; Goeken, J Adam et al. (2018) Glycogen depletion can increase the specificity of mucin detection in airway tissues. BMC Res Notes 11:763 |
Showing the most recent 10 out of 184 publications