The In Vitro Models and Cell Culture Core is established as a resource for all projects in thePPG.
The specific aims are:1. Acquisition of normal and CF tissue.2. Generation of in vitro models of human airway epithelia.3. Characterization of in vitro models and native epithelia. a. Electrophysiologic analysis. b. Morphologic evaluation. c. Genotyping of CF cells.4. Research and development of new methods and models for the study of gene transfer, airway epithelial, cell biology, and submucosal glands.5. Production of cultured cells for investigators in the PPG.6. Development of a cryogenic bank of airway epithelial cells.7. Teaching investigators at the University of Iowa and other institutions the methods fordeveloping in vitro model systems.8. Record keeping relevant to tissue acquisition and cell culture.9. Obtaining approval from regulatory committees and record keeping for cell and animalstudies.10. Provision of cells, plasmids, and viruses to investigators at other institutions.This Core brings the expertise of a highly motivated and technically sophisticated staff tothe benefit of the PPG investigators. As a result, it allows PPG investigators to focus theirunique expertise on questions of high relevance to CF gene transfer.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL051670-15
Application #
7589765
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2008-04-01
Budget End
2009-03-31
Support Year
15
Fiscal Year
2008
Total Cost
$120,620
Indirect Cost
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Lynch, Thomas J; Anderson, Preston J; Rotti, Pavana G et al. (2018) Submucosal Gland Myoepithelial Cells Are Reserve Stem Cells That Can Regenerate Mouse Tracheal Epithelium. Cell Stem Cell 22:653-667.e5
Meyerholz, David K; Stoltz, David A; Gansemer, Nick D et al. (2018) Lack of cystic fibrosis transmembrane conductance regulator disrupts fetal airway development in pigs. Lab Invest 98:825-838
Gray, Robert D; Hardisty, Gareth; Regan, Kate H et al. (2018) Delayed neutrophil apoptosis enhances NET formation in cystic fibrosis. Thorax 73:134-144
Thornell, Ian M; Li, Xiaopeng; Tang, Xiao Xiao et al. (2018) Nominal carbonic anhydrase activity minimizes airway-surface liquid pH changes during breathing. Physiol Rep 6:
Reznikov, Leah R; Meyerholz, David K; Abou Alaiwa, Mahmoud et al. (2018) The vagal ganglia transcriptome identifies candidate therapeutics for airway hyperreactivity. Am J Physiol Lung Cell Mol Physiol 315:L133-L148
Meyerholz, David K; Beck, Amanda P; Goeken, J Adam et al. (2018) Glycogen depletion can increase the specificity of mucin detection in airway tissues. BMC Res Notes 11:763
O'Malley, Yunxia; Rotti, Pavana G; Thornell, Ian M et al. (2018) Development of a polarized pancreatic ductular cell epithelium for physiological studies. J Appl Physiol (1985) 125:97-106
Rosen, Bradley H; Chanson, Marc; Gawenis, Lara R et al. (2018) Animal and model systems for studying cystic fibrosis. J Cyst Fibros 17:S28-S34
Meyerholz, David K; Sieren, Jessica C; Beck, Amanda P et al. (2018) Approaches to Evaluate Lung Inflammation in Translational Research. Vet Pathol 55:42-52
Rosen, Bradley H; Evans, T Idil Apak; Moll, Shashanna R et al. (2018) Infection Is Not Required for Mucoinflammatory Lung Disease in CFTR-Knockout Ferrets. Am J Respir Crit Care Med 197:1308-1318

Showing the most recent 10 out of 184 publications