Core A (Vector) will provide assistance in the design, construction and structural verification of gene therapy vectors based on adenovirus (Ad). The major role of the core is to provide service, knowledge and biological materials to the investigators so they may focus on the biological aspects of their projects rather than the technology of Ad vector construction. For this reason the core will fulfill the following roles for all four of the projects in the program: Perform large scale vector preparations for the participating projects (target 50 preparations/year) in accordance with the core usage allocations and resources available; Create new gene therapy vectors by importing improvements in the technology and/or new transgenes and capsid modifications that are important for the participating projects (target 18/year); Provide Standard Operating Procedures for all phases in the construction of all Ad vectors; Education of project scientists in construction of vectors through tutorials with senior core scientists and shadowing core technicians; Supply verified samples of biological samples for the vector construction including plasmids, cell lines and starting vectors, and maintain a database describing those materials.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL051746-07
Application #
6318393
Study Section
Project Start
2000-06-01
Project End
2001-03-31
Budget Start
1998-10-01
Budget End
1999-09-30
Support Year
7
Fiscal Year
2000
Total Cost
$252,599
Indirect Cost
Name
Weill Medical College of Cornell University
Department
Type
DUNS #
201373169
City
New York
State
NY
Country
United States
Zip Code
10065
Ryan, Dorothy M; Vincent, Thomas L; Salit, Jacqueline et al. (2014) Smoking dysregulates the human airway basal cell transcriptome at COPD risk locus 19q13.2. PLoS One 9:e88051
Dvorak, Anna; Tilley, Ann E; Shaykhiev, Renat et al. (2011) Do airway epithelium air-liquid cultures represent the in vivo airway epithelium transcriptome? Am J Respir Cell Mol Biol 44:465-73
Krause, Anja; Whu, Wen Zhu; Xu, Yaqin et al. (2011) Protective anti-Pseudomonas aeruginosa humoral and cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosa protein OprF. Vaccine 29:2131-9
Limberis, Maria P; Bell, Christie L; Heath, Jack et al. (2010) Activation of transgene-specific T cells following lentivirus-mediated gene delivery to mouse lung. Mol Ther 18:143-50
Song, Yuhu; Lou, Howard H; Boyer, Julie L et al. (2009) Functional cystic fibrosis transmembrane conductance regulator expression in cystic fibrosis airway epithelial cells by AAV6.2-mediated segmental trans-splicing. Hum Gene Ther 20:267-81
Vandenberghe, L H; Breous, E; Nam, H-J et al. (2009) Naturally occurring singleton residues in AAV capsid impact vector performance and illustrate structural constraints. Gene Ther 16:1416-28
Fein, David E; Limberis, Maria P; Maloney, Sean F et al. (2009) Cationic lipid formulations alter the in vivo tropism of AAV2/9 vector in lung. Mol Ther 17:2078-87
Limberis, Maria P; Vandenberghe, Luk H; Zhang, Liqun et al. (2009) Transduction efficiencies of novel AAV vectors in mouse airway epithelium in vivo and human ciliated airway epithelium in vitro. Mol Ther 17:294-301
Tertilt, Christine; Joh, Ju; Krause, Anja et al. (2009) Expression of B-cell activating factor enhances protective immunity of a vaccine against Pseudomonas aeruginosa. Infect Immun 77:3044-55
Limberis, M P; Bell, C L; Wilson, J M (2009) Identification of the murine firefly luciferase-specific CD8 T-cell epitopes. Gene Ther 16:441-7

Showing the most recent 10 out of 85 publications