The ability to deliver genes using cell surface receptors to achieve organ specific targeting in vivo has been demonstrated, although with low efficiency. High level expression with DNA complexes in vitro requires adenovirus for endosome lysis and perhaps for other unidentified functions. The objective of this project is to develop chemically defined delivery systems to achieve highly efficient delivery of genes into the nucleus of the airway epithelium, first in vitro and then in vivo. By the incorporation of specific peptides and proteins in the DNA complex, this type of delivery system will facilitate an understanding of the role of viral and cellular proteins in achieving high level expression of exogenous DNA.
Specific Aim 1 is to prepare DNA binding poly-L-lysine conjugates containing receptor ligands for the (a) folate receptor, (b) mannose-6- phosphate receptor (c) vasoactive intestinal peptide and (d) dimeric immunoglobulin A receptor of airway epithelial cells. Physical and chemical methods will be used to characterize the structural, thermodynamic, and kinetic properties of the DNA complexes.
Specific Aim 2 is to elucidate the structural requirements for endosome lysis by lytic peptide sequences taken viral fusogenic proteins. Biochemical methods and digital imaging fluorescence microscopy will be used to determine if the peptides must form trimers to achieve pH dependent lysis of liposomes and endosomes in living cells.
Specific Aim 3 is to determine, after endocytosis of the DNA:ligand complex and its release into the cytoplasm, what kind of structural and compositional changes in the complex are necessary for the DNA to move through the cytoplasm into the nucleus. DNA movement in the cytoplasm, DNA accumulation in the nucleus, and the probable dissociation of the complex in the cytoplasm will be measured using biochemical methods and digital imaging fluorescence microscopy.
Specific Aim 4 is to synthesize DNA binding ligands that facilitate transport of the DNA through the cytoplasm into the nucleus. The SV-40 nuclear localization sequence on a DNA binding polypeptide will be tested as a component of the DNA complex.
Specific Aim 5 is to demonstrate that the DNA complexes, constructed on the basis of in vitro experiments, are effective for gene delivery in vivo.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL051754-01
Application #
3781197
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
1993
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
074615394
City
Houston
State
TX
Country
United States
Zip Code
77030
Sakuma, Tsutomu; Gu, Xiu; Wang, Zheng et al. (2006) Stimulation of alveolar epithelial fluid clearance in human lungs by exogenous epinephrine. Crit Care Med 34:676-81
Toietta, Gabriele; Mane, Viraj P; Norona, Wilma S et al. (2005) Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci U S A 102:3930-5
Pastore, Lucio; Belalcazar, L Maria; Oka, Kazuhiro et al. (2004) Helper-dependent adenoviral vector-mediated long-term expression of human apolipoprotein A-I reduces atherosclerosis in apo E-deficient mice. Gene 327:153-60
Morral, Nuria; O'Neal, Wanda K; Rice, Karen et al. (2002) Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 13:143-54
Toietta, Gabriele; Pastore, Lucio; Cerullo, Vincenzo et al. (2002) Generation of helper-dependent adenoviral vectors by homologous recombination. Mol Ther 5:204-10
O'Neal, W K; Zhou, H; Morral, N et al. (2000) Toxicity associated with repeated administration of first-generation adenovirus vectors does not occur with a helper-dependent vector. Mol Med 6:179-95
Morral, N; O'Neal, W; Rice, K et al. (1999) Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci U S A 96:12816-21
Lee, B; Dennis, J A; Healy, P J et al. (1999) Hepatocyte gene therapy in a large animal: a neonatal bovine model of citrullinemia. Proc Natl Acad Sci U S A 96:3981-6
O'Neal, W K; Zhou, H; Morral, N et al. (1998) Toxicological comparison of E2a-deleted and first-generation adenoviral vectors expressing alpha1-antitrypsin after systemic delivery. Hum Gene Ther 9:1587-98
Morral, N; Parks, R J; Zhou, H et al. (1998) High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity. Hum Gene Ther 9:2709-16

Showing the most recent 10 out of 25 publications