This core will facilitate the use of state-of-the-art cellular and molecular biology technologies in all of the projects in the Program Project. The responsibilities of the Core will involve the performance of two separate by related functions: 1) The Tissue Culture unit will provide tissue culture cells and the expertise necessary to complete the cellular biology protocols in the individual proposals and 2) The Molecular Biology unit will quantify specific mRNAs from harvested tissue and cultured cells as outlined in each of the five projects. In the previous program project, the molecular biology unit was a part of the Molecular Genetics Core. The expanded use of molecular techniques by all investigators as well as the need for tissue culture expertise in several of the projects resulted in the development of the current Core outline din this application. The protocols, equipment, reagents and expertise for a number of other techniques are available in the Core. These include Norther, Southern and Western blot analysis, in situ hybridization histochemistry, immunocytochemistry, subcloning of gene fragments for riboprobe development, and riboprobe synthesis. If required, these procedures will be provided to the investigators during the course of the proposed studies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL051952-08
Application #
6434956
Study Section
Project Start
2001-04-01
Project End
2002-03-31
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
8
Fiscal Year
2001
Total Cost
$131,864
Indirect Cost
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
041418799
City
Winston-Salem
State
NC
Country
United States
Zip Code
27106
Dell'Italia, Louis J; Collawn, James F; Ferrario, Carlos M (2018) Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ Res 122:319-336
Ahmad, Sarfaraz; Ferrario, Carlos M (2018) Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010-2018). Expert Opin Ther Pat 28:755-764
Wang, Hao; Sun, Xuming; Lin, Marina S et al. (2018) G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Transl Res 199:39-51
Ahmad, Sarfaraz; Sun, Xuming; Lin, Marina et al. (2018) Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in SHR. J Cell Physiol 233:3330-3342
Li, Tiankai; Zhang, Xiaowei; Cheng, Heng-Jie et al. (2018) Critical role of the chymase/angiotensin-(1-12) axis in modulating cardiomyocyte contractility. Int J Cardiol 264:137-144
Ola, Mohammad Shamsul; Alhomida, Abdullah S; Ferrario, Carlos M et al. (2017) Role of Tissue Renin-angiotensin System and the Chymase/angiotensin-( 1-12) Axis in the Pathogenesis of Diabetic Retinopathy. Curr Med Chem 24:3104-3114
Ferrario, Carlos M; Mullick, Adam E (2017) Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 125:57-71
Chappell, Mark C; Al Zayadneh, Ebaa M (2017) Angiotensin-(1-7) and the Regulation of Anti-Fibrotic Signaling Pathways. J Cell Signal 2:
Alencar, Allan K; da Silva, Jaqueline S; Lin, Marina et al. (2017) Effect of Age, Estrogen Status, and Late-Life GPER Activation on Cardiac Structure and Function in the Fischer344×Brown Norway Female Rat. J Gerontol A Biol Sci Med Sci 72:152-162
Guichard, Jason L; Rogowski, Michael; Agnetti, Giulio et al. (2017) Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure. Am J Physiol Heart Circ Physiol 313:H32-H45

Showing the most recent 10 out of 309 publications