The long-term goal of this project is to develop a quantitative analysis of circulatory dynamics and their control. Therefore, our research program has been very broad, covering most aspects of the cardiovascular system and related control mechanisms. Two unique features of this program are that: (1) it extensively utilizes mathematical systems analyses in conjunction with animal experimentation to understand complex interactions between multiple components of the cardiovascular control systems and (2) it focuses on long-term as well as short-term control of the circulation because many cardiovascular diseases, such as hypertension and heart failure, are manifestations of abnormal control mechanisms that take place over long periods of time. The research proposed in this application is described by the titles of the specific projects, as follows: I. Computer Analysis of Circulatory Mechanisms II. Renal Control of Body Fluid Volumes and Circulatory Dynamics III. Neurohumoral and Renal Mechanisms of Hypertension IV. Hemodynamics and Endothelial Mechanisms V. Nervous System Mechanisms in Circulatory Control VI. Control of Microcirculatory Structure and Function The first project addresses the quantitative methodology for integrating all aspects of cardiovascular dynamics and circulatory control. The remaining projects address multiple interrelated areas of animal experimentation on mechanisms that influence cardiovascular dynamics, especially the kidneys, hormonal systems, the nervous system and local control mechanisms. These projects utilize a multidisciplinary approach, ranging from molecular and cellular studies to long-term studies in conscious animals. However, a common feature of all projects is that they focus on the integrative relationships between the circulation and other control mechanisms.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
1P01HL051971-01
Application #
3098944
Study Section
Heart, Lung, and Blood Research Review Committee B (HLBB)
Project Start
1993-08-01
Project End
1998-07-31
Budget Start
1993-08-01
Budget End
1994-07-31
Support Year
1
Fiscal Year
1993
Total Cost
Indirect Cost
Name
University of Mississippi Medical Center
Department
Type
Schools of Medicine
DUNS #
928824473
City
Jackson
State
MS
Country
United States
Zip Code
39216
Eddy, Adrian C; Bidwell 3rd, Gene L; George, Eric M (2018) Pro-angiogenic therapeutics for preeclampsia. Biol Sex Differ 9:36
do Carmo, Jussara M; da Silva, Alexandre A; Moak, Sydney P et al. (2018) Role of melanocortin 4 receptor in hypertension induced by chronic intermittent hypoxia. Acta Physiol (Oxf) :e13222
Lindsey, Merry L; Bolli, Roberto; Canty Jr, John M et al. (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314:H812-H838
Chen, Xu; Li, Xuan; Zhang, Wenyan et al. (2018) Activation of AMPK inhibits inflammatory response during hypoxia and reoxygenation through modulating JNK-mediated NF-?B pathway. Metabolism 83:256-270
Ma, Yonggang; Mouton, Alan J; Lindsey, Merry L (2018) Cardiac macrophage biology in the steady-state heart, the aging heart, and following myocardial infarction. Transl Res 191:15-28
Mouton, Alan J; DeLeon-Pennell, Kristine Y; Rivera Gonzalez, Osvaldo J et al. (2018) Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res Cardiol 113:26
Meschiari, Cesar A; Jung, Mira; Iyer, Rugmani Padmanabhan et al. (2018) Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing after myocardial infarction. Am J Physiol Heart Circ Physiol 314:H224-H235
Hinds Jr, Terry D; Stec, David E (2018) Bilirubin, a Cardiometabolic Signaling Molecule. Hypertension 72:788-795
Adeosun, Samuel O; Moore, Kyle H; Lang, David M et al. (2018) A Novel Fluorescence-Based Assay for the Measurement of Biliverdin Reductase Activity. React Oxyg Species (Apex) 5:35-45
Hall, Michael E; Jordan, Jennifer H; Juncos, Luis A et al. (2018) BOLD magnetic resonance imaging in nephrology. Int J Nephrol Renovasc Dis 11:103-112

Showing the most recent 10 out of 767 publications