The sympathetic nervous system plays an important role in the pathogenesis of hypertension, although the precise mechanisms are unclear. This is because techniques are needed to critically evaluate the role of the nervous system in the chronic regulation of arterial pressure. There has been considerable interest in the impact of baroreflexes on sympathetic activity and arterial pressure in chronic hypertension, particularly since baroreflex dysfunction is commonly associated with hypertension. As baroreflexes reset in the direction of the prevailing level of pressure, it has been argued that they cannot possibly play a role in long-term regulation of arterial pressure. However, novel approaches in chronically instrumented animals have recently shown that baroreflexes do not totally reset in hypertension and that they promote sodium excretion by producing sustained reductions in renal sympathetic nerve activity (RSNA). These findings suggest that baroreflex mediated inhibition of RSNA may play an important compensatory role in hypertensxon. The proposed studies will evaluate this concept by employing 2 techniques: 1) prolonged activation of the baroreflex by bilateral electrical stimulation of the carotid sinus, and 2) abrogation of the baroreflex by sinoaortic denervation (SAD). As carotid baroreceptor afferent input into the CNS will be constant during carotid sinus stimulation, this will permit several novel determinations including: 1) the long-term hypotensive response to prolonged baroreflex activation in normal dogs and the role of the renal nerves in mediating the hypotension, and 2) the long-term hypotensive response to baroreflex activation in hypertensive dogs and the importance of a responsive renin-angiotensin system in mediating the hypotension. The compensatory role of the baroreflex in attenuating different models of hypertension will be tested further by SAD. We hypothesize that sustained baroreflex activation can attenuate the severity of hypertension by chronically suppressing RSNA. Further, we propose that suppression of renin secretion contributes to the hypotensive effects of baroreflex mediated renal sympathoinhibition. Thus, we expect the hypotensive response to baroreflex activation to be attenuated in hypertension produced by infusion of either angiotensin or aldosterone, but not in obesity hypertension in which increased renin secretion is linked to increased RSNA. Insight from these studies will be directly relevant to neurally mediated renal compensations in hypertension.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL051971-11
Application #
6781625
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2003-12-01
Project End
2008-11-30
Budget Start
2003-12-01
Budget End
2004-11-30
Support Year
11
Fiscal Year
2004
Total Cost
$190,196
Indirect Cost
Name
University of Mississippi Medical Center
Department
Type
DUNS #
928824473
City
Jackson
State
MS
Country
United States
Zip Code
39216
DeLeon-Pennell, Kristine Y; Mouton, Alan J; Ero, Osasere K et al. (2018) LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling. Basic Res Cardiol 113:40
Lindsey, Merry L; Kassiri, Zamaneh; Virag, Jitka A I et al. (2018) Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 314:H733-H752
Faulkner, Jessica L; Plenty, Nicole L; Wallace, Kedra et al. (2018) Selective inhibition of 20-hydroxyeicosatetraenoic acid lowers blood pressure in a rat model of preeclampsia. Prostaglandins Other Lipid Mediat 134:108-113
Spann, Redin A; Lawson, William J; Bidwell 3rd, Gene L et al. (2018) Rodent vertical sleeve gastrectomy alters maternal immune health and fetoplacental development. Clin Sci (Lond) 132:295-312
Lindsey, Merry L; Jung, Mira; Hall, Michael E et al. (2018) Proteomic analysis of the cardiac extracellular matrix: clinical research applications. Expert Rev Proteomics 15:105-112
Cates, Courtney; Rousselle, Thomas; Wang, Jinli et al. (2018) Activated protein C protects against pressure overload-induced hypertrophy through AMPK signaling. Biochem Biophys Res Commun 495:2584-2594
Mouton, Alan J; Rivera Gonzalez, Osvaldo J; Kaminski, Amanda R et al. (2018) Matrix metalloproteinase-12 as an endogenous resolution promoting factor following myocardial infarction. Pharmacol Res 137:252-258
Taylor, Erin B; Barati, Michelle T; Powell, David W et al. (2018) Plasma Cell Depletion Attenuates Hypertension in an Experimental Model of Autoimmune Disease. Hypertension 71:719-728
do Carmo, Jussara M; da Silva, Alexandre A; Moak, Sydney P et al. (2018) Increased sleep time and reduced energy expenditure contribute to obesity after ovariectomy and a high fat diet. Life Sci 212:119-128
Wang, Lin; Quan, Nanhu; Sun, Wanqing et al. (2018) Cardiomyocyte-specific deletion of Sirt1 gene sensitizes myocardium to ischaemia and reperfusion injury. Cardiovasc Res 114:805-821

Showing the most recent 10 out of 767 publications