Core B is responsible for the procurement, animal care, feeding, exercise training, and pathologic evaluation of experimental animals for all projects. Once animals arrive at the University of Missouri-Columbia (UMC), animal care and health monitoring will be accomplished by the combined efforts of personnel of the Office of Animal Resources (OAR), the Veterinary Medical Diagnostic Laboratory (VMDL), and Core B. Blood and other samples will be obtained by technicians and veterinary medical students under the supervision of OAR, VMDL, and Drs. Turk and Laughlin according to procedures described below. Animals will be fed a high fat and cholesterol (HFC) or normal (NF) diet and exercised by pre-veterinary and veterinary medical students under the supervision of OAR, David Harah, and Drs. Turk and Laughlin according to established procedures described below. Core B will analyze plasma triglycerides (TG), total cholesterol (TC), and low (LDL) and high density lipoprotein (HDL) cholesterol to evaluate the effects of the HFC diet. Core B will be responsible for treadmill performance tests prior to and after exercise training and biochemical analyses of skeletal muscle oxidative capacity to evaluate the efficacy of training. A complete postmortem examination and pathologic characterization of cardiovascular disease will be performed on all pigs by Dr. Turk. In addition, Core B will obtain male transgenic pigs in which endothelial nitric oxide synthase (eNOS) is overexpressed or knocked out as described below

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL052490-15
Application #
8114790
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
2012-12-31
Budget Start
2010-01-01
Budget End
2012-12-31
Support Year
15
Fiscal Year
2010
Total Cost
$634,128
Indirect Cost
Name
University of Missouri-Columbia
Department
Type
DUNS #
153890272
City
Columbia
State
MO
Country
United States
Zip Code
65211
Masseau, I; Bowles, D K (2015) Carotid Endothelial VCAM-1 Is an Early Marker of Carotid Atherosclerosis and Predicts Coronary Artery Disease in Swine. J Biomed Sci Eng 8:789-796
Bender, Shawn B; de Beer, Vincent J; Tharp, Darla L et al. (2014) Reduced contribution of endothelin to the regulation of systemic and pulmonary vascular tone in severe familial hypercholesterolaemia. J Physiol 592:1757-69
Simmons, Grant H; Padilla, Jaume; Jenkins, Nathan T et al. (2014) Exercise training and vascular cell phenotype in a swine model of familial hypercholesterolaemia: conduit arteries and veins. Exp Physiol 99:454-65
Gole, Hope K A; Tharp, Darla L; Bowles, Douglas K (2014) Upregulation of intermediate-conductance Ca2+-activated K+ channels (KCNN4) in porcine coronary smooth muscle requires NADPH oxidase 5 (NOX5). PLoS One 9:e105337
McKenney, Mikaela L; Schultz, Kyle A; Boyd, Jack H et al. (2014) Epicardial adipose excision slows the progression of porcine coronary atherosclerosis. J Cardiothorac Surg 9:2
Heaps, Cristine L; Robles, Juan Carlos; Sarin, Vandana et al. (2014) Exercise training-induced adaptations in mediators of sustained endothelium-dependent coronary artery relaxation in a porcine model of ischemic heart disease. Microcirculation 21:388-400
Hamilton, Marc T; Hamilton, Deborah G; Zderic, Theodore W (2014) Sedentary behavior as a mediator of type 2 diabetes. Med Sport Sci 60:11-26
Fain, John N; Company, Joseph M; Booth, Frank W et al. (2013) Exercise training does not increase muscle FNDC5 protein or mRNA expression in pigs. Metabolism 62:1503-11
de Beer, Vincent J; Merkus, Daphne; Bender, Shawn B et al. (2013) Familial hypercholesterolemia impairs exercise-induced systemic vasodilation due to reduced NO bioavailability. J Appl Physiol (1985) 115:1767-76
Congdon, Kimberly A; Hammond, Ashley S; Ravosa, Matthew J (2012) Differential limb loading in miniature pigs (Sus scrofa domesticus): a test of chondral modeling theory. J Exp Biol 215:1472-83

Showing the most recent 10 out of 169 publications