The transgenic and knockout mouse core will support the work of all 4 projects of the proposed PPG. The core will be located at the Rockefeller University Laboratory Animal Research Center. The core will: 1) micro- inject DNA into fertilized eggs to create transgenic mouse lines; 2) electroporate DNA constructions into ES cells, clone and select homologous recombinants, perform blastocyst injection of correctly targeted ES cells, breed chimeras to demonstrate germ line transmission to demonstrate germ line transmission of gene knockout; and 3) cryopreserve liens of transgenic and knockout mice.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL054591-07
Application #
6480001
Study Section
Project Start
2001-07-01
Project End
2002-06-30
Budget Start
Budget End
Support Year
7
Fiscal Year
2001
Total Cost
$268,239
Indirect Cost
Name
Rockefeller University
Department
Type
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Fredman, Gabrielle; Kamaly, Nazila; Spolitu, Stefano et al. (2015) Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci Transl Med 7:275ra20
Subramanian, Manikandan; Tabas, Ira (2014) Dendritic cells in atherosclerosis. Semin Immunopathol 36:93-102
Subramanian, Manikandan; Hayes, Crystal D; Thome, Joseph J et al. (2014) An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J Clin Invest 124:1296-308
Libby, Peter; Tabas, Ira; Fredman, Gabrielle et al. (2014) Inflammation and its resolution as determinants of acute coronary syndromes. Circ Res 114:1867-79
Nagareddy, Prabhakara R; Murphy, Andrew J; Stirzaker, Roslynn A et al. (2013) Hyperglycemia promotes myelopoiesis and impairs the resolution of atherosclerosis. Cell Metab 17:695-708
Subramanian, Manikandan; Thorp, Edward; Hansson, Goran K et al. (2013) Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J Clin Invest 123:179-88
Gautier, Emmanuel L; Westerterp, Marit; Bhagwat, Neha et al. (2013) HDL and Glut1 inhibition reverse a hypermetabolic state in mouse models of myeloproliferative disorders. J Exp Med 210:339-53
Rodríguez, José M; Wolfrum, Susanne; Robblee, Megan et al. (2013) Altered expression of Raet1e, a major histocompatibility complex class 1-like molecule, underlies the atherosclerosis modifier locus Ath11 10b. Circ Res 113:1054-64
Tabas, Ira; Glass, Christopher K (2013) Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339:166-72
Rong, James X; Blachford, Courtney; Feig, Jonathan E et al. (2013) ACAT inhibition reduces the progression of preexisting, advanced atherosclerotic mouse lesions without plaque or systemic toxicity. Arterioscler Thromb Vasc Biol 33:4-12

Showing the most recent 10 out of 124 publications