Point mutations in both the beta-cardiac myosin heavy chain and in alpha-cardiac actin lead to either familial hypertrophic cardiomyopathy (FHC) or dilated cardiomyopathy (DCM). To arrive at a definitive mechanism for the primary cause of these two diseases, we propose to undertake an extensive kinetic, mechanical, and structural analysis of mutated cardiac myosins and actins.
Aim #1 will examine the effect of isoform backbone on function by comparing the R403Q mutation in an alpha- or beta-murine cardiac myosin heavy chain (MHC) isoform obtained by overexpression in transgenic mice. Mutated MHCs will be HIS-tagged at the N-terminus to facilitate isolation by metal chelate affinity chromatography. The mutant myosins will be characterized enzymatically by steady-state and transient kinetics, and mechanically by measurements of velocity and average force. Structural differences between wildtype and mutant myosin isoforms will be investigated by computer-based fitting of crystal structures into 3D-reconstructions of actomyosin complexes obtained by electron cryomicroscopy. Similar analyses will be extended to point mutations leading to FHC (G741R, R453C) and DCM (S532 and F764). For a better understanding of the functional consequences of a point mutation in human myosin, Aim #2 will analyze myosin isolated from transgenic rabbits that express a human beta-cardiac myosin (R403Q) gene. In parallel, several new strategies for expression of human beta-cardiac myosin in vitro will be explored, including use of the Drosophila S2 expression system, and the addition of chaperones to increase the yield of striated muscle myosin isoforms.
Aim #3 will seek to characterize the effect of point mutations in actin that lead to FHC or DCM. alpha-cardiac actin expressed in the baculovirus/insect cell system allows us to investigate the effect of mutations in the correct backbone, rather than in the currently used yeast actin system. Alterations to actin's intrinsic filamentous structure, and to its interactions with myosin, will be assessed by many of he same approaches as described for the myosin mutations.The overall goal of the proposal is to elucidate how mutations implicated in FHC and in DCM affect the mechanical performance of myosin and actin, and to determine if any correlation can be made between the effect of the primary mutation and the ultimate disease phenotype.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL059408-08
Application #
7394386
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2006-12-01
Budget End
2007-11-30
Support Year
8
Fiscal Year
2007
Total Cost
$555,049
Indirect Cost
Name
University of Vermont & St Agric College
Department
Type
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
Singh, Sonia R; Robbins, Jeffrey (2018) Desmin and Cardiac Disease: An Unfolding Story. Circ Res 122:1324-1326
Lin, Brian Leei; Li, Amy; Mun, Ji Young et al. (2018) Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca2+-dependent manner. Sci Rep 8:2604
Kensler, Robert W; Craig, Roger; Moss, Richard L (2017) Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments. Proc Natl Acad Sci U S A 114:E1355-E1364
McLendon, Patrick M; Davis, Gregory; Gulick, James et al. (2017) An Unbiased High-Throughput Screen to Identify Novel Effectors That Impact on Cardiomyocyte Aggregate Levels. Circ Res 121:604-616
Bhuiyan, Md Shenuarin; McLendon, Patrick; James, Jeanne et al. (2016) In vivo definition of cardiac myosin-binding protein C's critical interactions with myosin. Pflugers Arch 468:1685-95
Gupta, Manish K; McLendon, Patrick M; Gulick, James et al. (2016) UBC9-Mediated Sumoylation Favorably Impacts Cardiac Function in Compromised Hearts. Circ Res 118:1894-905
Warshaw, David M (2016) HEART DISEASE. Throttling back the heart's molecular motor. Science 351:556-7
James, Jeanne; Robbins, Jeffrey (2016) Healing a Heart Through Genetic Intervention. Circ Res 118:920-2
Mun, Ji Young; Kensler, Robert W; Harris, Samantha P et al. (2016) The cMyBP-C HCM variant L348P enhances thin filament activation through an increased shift in tropomyosin position. J Mol Cell Cardiol 91:141-7
Previs, Michael J; Mun, Ji Young; Michalek, Arthur J et al. (2016) Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. Proc Natl Acad Sci U S A 113:3239-44

Showing the most recent 10 out of 168 publications