Loss of endothelial barrier function is an important characteristic of Acute Lung Injury (ALl). The transcellular transport of albumin and other macromolecules via endothelial caveolae is a factor contributing to endothelial barrier function. We have identified specific interactions between caveolin-1 (a caveolar protein), the heterotrimeric G protein Gi, and Src kinase in the mechanism of caveolae-mediated endocytosis. The goals of Project 4 are to define the role of caveolin-1 as an organizer and regulator of signal transduction cascades essential for plasmatemmal vesicle trafficking and the protein-protein interactions that regulate albumin permeability via transcytosis. The studies in Project 4 will address the following specific aims.
Specific Aim #1 : To determine the role of the heterotrimeric G protein, Gi, in signaling ceaveolae-mediated endocytosis and transendothelial albumin permeability in endothelial monolayers;
Specific Aim #2 : To determine the role of Src activation of the GTPase, dynamin-2, in signaling caveolae-mediated endocytosis and transendothelial albumin permeability;
Specific Aim #3 :To address the component of thrombin/Protease Activated Receptor-1-induced increase in lung vascular permeability resulting from internalization of caveolae and transcelinlar albumin transport. Thus, Project 4 will identify the receptor-coupled signals activating Src, the phosphorylation targets of Src signaling caveolae fission (specifically, caveolin-1 and dynamin-2), and the role of Src activation in regulating transcellular permeability. To address the in vivo relevance and functional significance of these studies in pulmonary microvascular endothelial cells, experiments will also be made, wherever possible, in intact mouse lung models. Studies will employ approaches in both imaging (i.e., using fluorescent probes and electron microscopic assessment) and physiology (i.e., determination of endothelial permeability in monoayers and mouse lung models) to address the role of caveolae-mediated endocytosis in activating increased albumin permeability. Thus, these studies will elucidate the signaling mechanisms that regulate caveolae internalization and plasmalemmal vesicle trafficking, and thus contribute to the mechanism of transendothelial albumin permeability in lungs. The achievement of these objectives will lead to tthe elucidation of the signals regulating caveolae-mediated endocytosis and its role in contributing to the thrombin-induced increase in lung vascular permeability. With the identification of novel signaling pathways, it may be possible to develop therapeutic strategies that specifically target signals leading to inappropriate increase in lung vascular permeability.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL060678-07
Application #
7312502
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2006-03-01
Project End
2010-02-28
Budget Start
2006-03-01
Budget End
2007-02-28
Support Year
7
Fiscal Year
2006
Total Cost
$292,538
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Christoforidis, Theodore; Driver, Tom G; Rehman, Jalees et al. (2018) Generation of controllable gaseous H2S concentrations using microfluidics. RSC Adv 8:4078-4083
Di, Anke; Xiong, Shiqin; Ye, Zhiming et al. (2018) The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 49:56-65.e4
Chen, Zhenlong; D S Oliveira, Suellen; Zimnicka, Adriana M et al. (2018) Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell 29:1190-1202
Le Master, Elizabeth; Huang, Ru-Ting; Zhang, Chongxu et al. (2018) Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arterioscler Thromb Vasc Biol 38:64-75
Marsboom, Glenn; Rehman, Jalees (2018) Hypoxia Signaling in Vascular Homeostasis. Physiology (Bethesda) 33:328-337
Lv, Yang; Kim, Kyungho; Sheng, Yue et al. (2018) YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6. Circ Res 123:43-56
Komarova, Yulia; Kruse, Kevin J; Mehta, Dolly et al. (2017) Response by Komarova et al to Letter Regarding Article, ""Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability"". Circ Res 120:e28
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu et al. (2017) Response by Mittal et al to Letter Regarding Article, ""Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury"". Circ Res 121:e87
Soni, Dheeraj; Regmi, Sushil C; Wang, Dong-Mei et al. (2017) Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca2+ entry regulates disassembly of adherens junctions. Am J Physiol Lung Cell Mol Physiol 312:L1003-L1017
Oliveira, Suellen D S; Castellon, Maricela; Chen, Jiwang et al. (2017) Inflammation-induced caveolin-1 and BMPRII depletion promotes endothelial dysfunction and TGF-?-driven pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 312:L760-L771

Showing the most recent 10 out of 200 publications