Sepsis, a leading cause of acute lung injury, causes pulmonary inflammation and increased capillary endothelial permeability and is a potent stimulus for inducible nitric oxide synthase (iNOS) expression. Nitric oxide (NO) plays an important role in regulating lung vascular permeability, and high levels produced during inflammation, or combined with superoxide to form peroxynitrite, can injure the endothelial barrier. Although iNOS is thought to be primarily transcriptionally regulated, our evidence shows that iNOS activity and NO production in cytokine-stimulated human lung microvascular endothelial cells (HLMVECs) are under more finely-tuned post-translational regulation. In Project 2, we will address new and important signaling pathways by which high output NO is regulated in cytokine-stimulated HLMVECs.
In Specific Aim #1, we will elucidate the mechanisms by which NO production via iNOS is efficiently induced by the release of Arg from Arg-containing peptides by the membrane carboxypeptidases (CP) M and CPD. Our hypothesis is that CPM and/or CPD form a macromolecular complex with the Arg transporter and iNOS resulting in tight coupling of the transfer of Arg released from peptide substrates to iNOS.
In Specific Aim #2, we will identify the signaling pathways by which the kinin B1 receptor stimulates iNOS activity and high output NO production in cytokine-stimulated HLMVECs and determine its consequences on lung endothelial barrier function. Our hypothesis is that B1 receptor stimulation in cytokine-treated HLMVECs activates iNOS by coupling through the heterotrimeric G protein, Galpha-i, and Src kinase leading to a change in phosphorylation and/or subcellular localization of iNOS to up-regulate NO production.
In Specific Aim #3, we will determine the pathway of the bradykinin B2 receptor stimulation of the prolonged, high output NO in cytokine-acfivated HLMVECs and the role of CPM and CPD in amplifying NO output by converting kinin B2 agonists to the des-Arg-kinin B1 agonists, and the resultant consequences on endothelial permeability. Our hypothesis is that the B2 receptor couples through Galpha-i in cytokine-stimulated HLMVECs to activate Src kinase and Akt, resulting in phosphorylation and the prolonged activation of eNOS. This, coupled with carboxypeptidase-mediated generation or B1 agonists and B1 receptor activation of iNOS, results in the further amplification of NO production and disruption of the endothelial barrier. These studies will identify novel mechanisms by which lung microvascular endothelial cells under inflammatory conditions can generate high-output NO as autocrine and paracrine signals to increase endothelial permeability, and thus will allow identification of potential targets for therapeutic intervention to improve endothelial barrier function.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL060678-08
Application #
7367821
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
2007-03-01
Project End
2010-02-28
Budget Start
2007-03-01
Budget End
2008-02-29
Support Year
8
Fiscal Year
2007
Total Cost
$308,119
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Christoforidis, Theodore; Driver, Tom G; Rehman, Jalees et al. (2018) Generation of controllable gaseous H2S concentrations using microfluidics. RSC Adv 8:4078-4083
Di, Anke; Xiong, Shiqin; Ye, Zhiming et al. (2018) The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 49:56-65.e4
Chen, Zhenlong; D S Oliveira, Suellen; Zimnicka, Adriana M et al. (2018) Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell 29:1190-1202
Le Master, Elizabeth; Huang, Ru-Ting; Zhang, Chongxu et al. (2018) Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arterioscler Thromb Vasc Biol 38:64-75
Marsboom, Glenn; Rehman, Jalees (2018) Hypoxia Signaling in Vascular Homeostasis. Physiology (Bethesda) 33:328-337
Lv, Yang; Kim, Kyungho; Sheng, Yue et al. (2018) YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6. Circ Res 123:43-56
Komarova, Yulia; Kruse, Kevin J; Mehta, Dolly et al. (2017) Response by Komarova et al to Letter Regarding Article, ""Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability"". Circ Res 120:e28
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu et al. (2017) Response by Mittal et al to Letter Regarding Article, ""Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury"". Circ Res 121:e87
Soni, Dheeraj; Regmi, Sushil C; Wang, Dong-Mei et al. (2017) Pyk2 phosphorylation of VE-PTP downstream of STIM1-induced Ca2+ entry regulates disassembly of adherens junctions. Am J Physiol Lung Cell Mol Physiol 312:L1003-L1017
Oliveira, Suellen D S; Castellon, Maricela; Chen, Jiwang et al. (2017) Inflammation-induced caveolin-1 and BMPRII depletion promotes endothelial dysfunction and TGF-?-driven pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 312:L760-L771

Showing the most recent 10 out of 200 publications