Loss of endothelial barrier function is an important characteristic of Acute Lung Injury (ALl). The transcellular transport of albumin and other macromolecules via endothelial caveolae is a factor contributing to endothelial barrier function. We have identified specific interactions between caveolin-1 (a caveolar protein), the heterotrimeric G protein Gi, and Src kinase in the mechanism of caveolae-mediated endocytosis. The goals of Project 4 are to define the role of caveolin-1 as an organizer and regulator of signal transduction cascades essential for plasmatemmal vesicle trafficking and the protein-protein interactions that regulate albumin permeability via transcytosis. The studies in Project 4 will address the following specific aims.
Specific Aim #1 : To determine the role of the heterotrimeric G protein, Gi, in signaling ceaveolae-mediated endocytosis and transendothelial albumin permeability in endothelial monolayers;
Specific Aim #2 : To determine the role of Src activation of the GTPase, dynamin-2, in signaling caveolae-mediated endocytosis and transendothelial albumin permeability;
Specific Aim #3 :To address the component of thrombin/Protease Activated Receptor-1-induced increase in lung vascular permeability resulting from internalization of caveolae and transcelinlar albumin transport. Thus, Project 4 will identify the receptor-coupled signals activating Src, the phosphorylation targets of Src signaling caveolae fission (specifically, caveolin-1 and dynamin-2), and the role of Src activation in regulating transcellular permeability. To address the in vivo relevance and functional significance of these studies in pulmonary microvascular endothelial cells, experiments will also be made, wherever possible, in intact mouse lung models. Studies will employ approaches in both imaging (i.e., using fluorescent probes and electron microscopic assessment) and physiology (i.e., determination of endothelial permeability in monoayers and mouse lung models) to address the role of caveolae-mediated endocytosis in activating increased albumin permeability. Thus, these studies will elucidate the signaling mechanisms that regulate caveolae internalization and plasmalemmal vesicle trafficking, and thus contribute to the mechanism of transendothelial albumin permeability in lungs. The achievement of these objectives will lead to tthe elucidation of the signals regulating caveolae-mediated endocytosis and its role in contributing to the thrombin-induced increase in lung vascular permeability. With the identification of novel signaling pathways, it may be possible to develop therapeutic strategies that specifically target signals leading to inappropriate increase in lung vascular permeability.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL060678-09
Application #
7587437
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2008-03-01
Budget End
2009-02-28
Support Year
9
Fiscal Year
2008
Total Cost
$298,401
Indirect Cost
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Marsboom, Glenn; Rehman, Jalees (2018) Hypoxia Signaling in Vascular Homeostasis. Physiology (Bethesda) 33:328-337
Lv, Yang; Kim, Kyungho; Sheng, Yue et al. (2018) YAP Controls Endothelial Activation and Vascular Inflammation Through TRAF6. Circ Res 123:43-56
Christoforidis, Theodore; Driver, Tom G; Rehman, Jalees et al. (2018) Generation of controllable gaseous H2S concentrations using microfluidics. RSC Adv 8:4078-4083
Di, Anke; Xiong, Shiqin; Ye, Zhiming et al. (2018) The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 49:56-65.e4
Chen, Zhenlong; D S Oliveira, Suellen; Zimnicka, Adriana M et al. (2018) Reciprocal regulation of eNOS and caveolin-1 functions in endothelial cells. Mol Biol Cell 29:1190-1202
Le Master, Elizabeth; Huang, Ru-Ting; Zhang, Chongxu et al. (2018) Proatherogenic Flow Increases Endothelial Stiffness via Enhanced CD36-Mediated Uptake of Oxidized Low-Density Lipoproteins. Arterioscler Thromb Vasc Biol 38:64-75
Ebenezer, David L; Fu, Panfeng; Suryadevara, Vidyani et al. (2017) Epigenetic regulation of pro-inflammatory cytokine secretion by sphingosine 1-phosphate (S1P) in acute lung injury: Role of S1P lyase. Adv Biol Regul 63:156-166
Yan, Meiping; Zhang, Xinhua; Chen, Ao et al. (2017) Endothelial cell SHP-2 negatively regulates neutrophil adhesion and promotes transmigration by enhancing ICAM-1-VE-cadherin interaction. FASEB J 31:4759-4769
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu et al. (2017) Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury. Circ Res 121:1081-1091
Yamada, Kaori H; Kang, Hojin; Malik, Asrar B (2017) Antiangiogenic Therapeutic Potential of Peptides Derived from the Molecular Motor KIF13B that Transports VEGFR2 to Plasmalemma in Endothelial Cells. Am J Pathol 187:214-224

Showing the most recent 10 out of 200 publications