Hypertension is a major risk factor for cerebrovascular disease and stroke, and a leading contributor to Alzheimer's disease and dementia. Thus, hypertension has an enormous negative impact on the brain. Hypertension-induced changes and end-organ damage to vascular muscle underlie many forms of cerebrovascular disease with diverse consequences. Angiotensin II (Ang II) plays a fundamental role during hypertension, promotes atherosclerosis, and contributes to vascular disease in the presence of many cardiovascular risk factors. The cerebral circulation is particularly sensitive to the detrimental effects of Ang II. A major barrier to progress in preventing cerebrovascular disease has been our limited understanding of endogenous molecules that protect the brain from vascular disease. Preliminary data generated in collaboration with Project 1 suggest that the transcription factor peroxisome proliferator-activated receptor-y (PPARy) plays a major protective role in the cerebral circulation. Using novel mouse models to define cell-specific mechanisms, the overall goal is to examine the role of PPARy In smooth muscle in the cerebral circulation under normal conditions and in Ang Il-dependent models of disease. Two major endpoints related to vascular muscle will be studied - regulation of vascular tone and inward remodeling.
Aim 1 examines the hypothesis that PPARy in smooth muscle affects regulation of vascular tone and protects against Ang ll induced vascular dysfunction.
Aim 1 will also determine if vascular dysfunction following interference with PPARy is mediated by oxidative stress and/or rho kinase and whether increased expression of wild-type PPARy or expression of a constitutively active form of PPARy protects against Ang ll-induced vascular dysfunction.
Aim 2 examines the hypothesis that PPARy in smooth muscle protects against inward remodeling and hypertrophy in resistance vessels in vivo and examines mechanisms involved. Preliminary data support these Alms and suggest that interference with PPARy in vascular muscle mimics effects of Ang II in cerebral blood vessels. Thus, mechanistic studies will be performed in resistance vessels supplying brain where the negative impact of hypertension is great and where our preliminary data suggest PPARy normally plays a prominent protective role. This highly collaborative Project fits well with Program-wide themes including mechanisms of cardiovascular protection and cell-specific effects of PPARy.

Public Health Relevance

Hypertension is a major risk factor for cerebrovascular disease and stroke but also a leading contributor to the vascular component of Alzheimer's disease and dementia. The goal of these studies is to define endogenous mechanisms that contribute to and protect against vascular disease in the brain during hypertension. Such insight may lead to improved therapeutic approaches to prevent or slow the progression of cerebrovascular disease.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL062984-13
Application #
8477958
Study Section
Special Emphasis Panel (ZHL1-PPG-P)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
13
Fiscal Year
2013
Total Cost
$403,697
Indirect Cost
$136,348
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Doddapattar, Prakash; Jain, Manish; Dhanesha, Nirav et al. (2018) Fibronectin Containing Extra Domain A Induces Plaque Destabilization in the Innominate Artery of Aged Apolipoprotein E-Deficient Mice. Arterioscler Thromb Vasc Biol 38:500-508
Hu, Xiaoming; De Silva, T Michael; Chen, Jun et al. (2017) Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke. Circ Res 120:449-471
De Silva, T Michael; Hu, Chunyan; Kinzenbaw, Dale A et al. (2017) Genetic Interference With Endothelial PPAR-? (Peroxisome Proliferator-Activated Receptor-?) Augments Effects of Angiotensin II While Impairing Responses to Angiotensin 1-7. Hypertension 70:559-565
Dhanesha, Nirav; Doddapattar, Prakash; Chorawala, Mehul R et al. (2017) ADAMTS13 Retards Progression of Diabetic Nephropathy by Inhibiting Intrarenal Thrombosis in Mice. Arterioscler Thromb Vasc Biol 37:1332-1338
Chen, Zixin; Li, Yongjun; Yu, Hong et al. (2017) Isolation of Extracellular Vesicles from Stem Cells. Methods Mol Biol 1660:389-394
Lu, Ko-Ting; Keen, Henry L; Weatherford, Eric T et al. (2016) Estrogen Receptor ? Is Required for Maintaining Baseline Renin Expression. Hypertension 67:992-9
Campbell, C R; Berman, A E; Weintraub, N L et al. (2016) Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells. Med Hypotheses 88:6-9
De Silva, T Michael; Faraci, Frank M (2016) Microvascular Dysfunction and Cognitive Impairment. Cell Mol Neurobiol 36:241-58
Littlejohn, Nicole K; Keen, Henry L; Weidemann, Benjamin J et al. (2016) Suppression of Resting Metabolism by the Angiotensin AT2 Receptor. Cell Rep 16:1548-1560
De Silva, T Michael; Kinzenbaw, Dale A; Modrick, Mary L et al. (2016) Heterogeneous Impact of ROCK2 on Carotid and Cerebrovascular Function. Hypertension 68:809-17

Showing the most recent 10 out of 288 publications